Characterization and electrical properties of tausonite (SrTiO3) in nano ceramic composites

Abstract

Tausonite phase was crystallized in SrTiO3 ceramic/borosilicate glass composite upon heat treatment at 1000–1100 °C range. Four samples containing 100/0, 90/10, 70/30 and 50/50 ratios from SrTiO3 ceramic/borosilicate glass were prepared. XRD, SEM/EDX, HR-TEM, SAED, ac conductivity (σac), dielectric constant (ε′), porosity and bulk density were measured. The sintering process permits the precipitation of tausonite phase solely in case of SrTiO3 ceramic ratio between 100 and 70%; whereas, rutile and cristobalite were developed in case of equal ratios of SrTiO3 ceramic and borosilicate glass. Investigating the microcrystalline structure revealed the spread of cubic tausonite crystals in micro- and nano-scale size in the samples containing 100, 90 and 70% SrTiO3 ceramic. The decrease of SrTiO3 content to 50% led to formation tetragonal crystals of both rutile and cristobalite phases. The dielectric constant and ac conductivity of the samples have been studied in the temperature range from room temperature up to 300 °C. The activation energy attained values between 0.12 and 0.74 eV. The sample with the highest percentage of SrTiO3 phase (100 wt%) exhibited the utmost dielectric constant and that with 30 wt% glass fraction showed dielectric constant mainly temperature independent, which permits its application in electronic devices in wide range of temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M. Pena, J. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001)

    Article  Google Scholar 

  2. 2.

    L.G. Tejuca, J.L. Fierro, Properties and Applications of Perovskite-Type Oxides (CRC Press, New York, 1992)

    Book  Google Scholar 

  3. 3.

    M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774–2779 (1976)

    Article  Google Scholar 

  4. 4.

    J. Fernandes, D. Melo, L. Zinner, C. Salustiano, Z. Silva, A. Martinelli, M. Cerqueira, C.A. Junior, E. Longo, M. Bernardi, Low-temperature synthesis of single-phase crystalline LaNiO3 perovskite via Pechini method. Mater. Lett. 53, 122–125 (2002)

    Article  Google Scholar 

  5. 5.

    X. Niu, H. Li, G. Liu, Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J. Mol. Catal. A 232, 89–93 (2005)

    Article  Google Scholar 

  6. 6.

    M. Ghaffari, P.Y. Tan, M.E. Oruc, O.K. Tan, M.S. Tse, M. Shannon, Effect of ball milling on the characteristics of nano structure SrFeO3 powder for photocatalytic degradation of methylene blue under visible light irradiation and its reaction kinetics. Catal. Today 161, 70–77 (2011)

    Article  Google Scholar 

  7. 7.

    N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ion. 174, 271–277 (2004)

    Article  Google Scholar 

  8. 8.

    N. Keller, J. Mistrik, Š. Višňovský, D. Schmool, Y. Dumont, P. Renaudin, M. Guyot, R. Krishnan, Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur. Phys. J. B 21, 67–73 (2001)

    Article  Google Scholar 

  9. 9.

    N. Kojima, K. Tsushima, Recent progress in magneto-optics and research on its application. Low Temp. Phys. 28, 480–490 (2002)

    Article  Google Scholar 

  10. 10.

    H. Sakakima, M. Satomi, E. Hirota, H. Adachi, Spin-valves using perovskite antiferromagnets as the pinning layers. IEEE Trans. Magn. 35, 2958–2960 (1999)

    Article  Google Scholar 

  11. 11.

    C. Alcock, R. Doshi, Y. Shen, Perovskite electrodes for sensors. Solid State Ion. 51, 281–289 (1992)

    Article  Google Scholar 

  12. 12.

    R. Eglitis, S. Piskunov, E. Heifets, E.A. Kotomin, G. Borstel, Ab initio study of the SrTiO3, BaTiO3 and PbTiO3 (0 0 1) surfaces. Ceram. Int. 30, 1989–1992 (2004)

    Article  Google Scholar 

  13. 13.

    S. Taylor, A. Samokhvalov, Water as probe molecule for midgap states in nanocrystalline strontium titanate by conventional and synchronous luminescence spectroscopy under ambient conditions. Spectrochim. Acta Part A 174, 54–61 (2017)

    Article  Google Scholar 

  14. 14.

    C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205–1241 (1993)

    Article  Google Scholar 

  15. 15.

    J. Zhao, X. Wu, L. Li, X. Li, Preparation and electrical properties of SrTiO3 ceramics doped with M2O3–PbO–CuO. Solid-state Electron. 48, 2287–2291 (2004)

    Article  Google Scholar 

  16. 16.

    F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency. J. Power Sources 185, 26–31 (2008)

    Article  Google Scholar 

  17. 17.

    W. Xuewen, Z. Zhiyong, Z. Shuixian, Preparation of nano-crystalline SrTiO3 powder in sol-gel process. Mater. Sci. Eng. B 86, 29–33 (2001)

    Article  Google Scholar 

  18. 18.

    S.-J. Shih, W.-L. Tzeng, Manipulation of morphology of strontium titanate particles by spray pyrolysis. Powder Technol. 264, 291–297 (2014)

    Article  Google Scholar 

  19. 19.

    R.F. Gonçalves, A.P. Moura, M. Godinho, E. Longo, M.A.C. Machado, D. de Castro, M.S. Li, A.P.A. Marques, Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceram. Int. 41, 3549–3554 (2015)

    Article  Google Scholar 

  20. 20.

    K. Fujinami, K. Katagiri, J. Kamiya, T. Hamanaka, K. Koumoto, Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. Nanoscale 2, 2080–2083 (2010)

    Article  Google Scholar 

  21. 21.

    M. Kim, S.-A. Hong, N. Shin, Y.H. Lee, Y. Shin, Synthesis of strontium titanate nanoparticles using supercritical water. Ceram. Int. 42, 17853–17857 (2016)

    Article  Google Scholar 

  22. 22.

    T. Murtaza, J. Ali, M.S. Khan, K. Asokan, Structural, electrical and magnetic properties of multiferroic BiFeO3–SrTiO3 composites. J. Mater. Sci. 29, 2110–2119 (2018)

    Google Scholar 

  23. 23.

    K.-W. Paik, J.-G. Hyun, S. Lee, K.-W. Jang, Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors in organic substrates, in 2006 1st Electronic Systemintegration Technology Conference, IEEE, 2006, pp. 794–801

  24. 24.

    M. Airimioaei, M. Buscaglia, I. Tredici, U. Anselmi-Tamburini, C. Ciomaga, L. Curecheriu, A. Bencan, V. Buscaglia, L. Mitoseriu, SrTiO 3–BaTiO 3 nanocomposites with temperature independent permittivity and linear tunability fabricated using field-assisted sintering from chemically synthesized powders. J. Mater. Chem. C 5, 9028–9036 (2017)

    Article  Google Scholar 

  25. 25.

    X. Shan, L. Zhang, X. Yang, Z.-Y. Cheng, Dielectric composites with a high and temperature-independent dielectric constant. J. Adv. Ceram. 1, 310–316 (2012)

    Article  Google Scholar 

  26. 26.

    A. Kumaryadav, C.R. Gautam, A review on crystallisation behaviour of perovskite glass ceramics. Adv. Appl. Ceram. 113, 193–207 (2014)

    Article  Google Scholar 

  27. 27.

    Z. Wu, M. Cao, Z. Shen, H. Yu, Z. Yao, D. Luo, H. Liu, Effect of glass additive on microstructure and dielectric properties of SrTiO3 ceramics. Ferroelectrics 356, 95–101 (2007)

    Article  Google Scholar 

  28. 28.

    M. Zawrah, E. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 28, 123–130 (2002)

    Article  Google Scholar 

  29. 29.

    R.M. Morsi, F.H. Margha, E.M. Hamzawy, Preparation and electrical characterization of Zn-titanate/borosilicate glass composites. Silicon (2018)

  30. 30.

    R.M. Morsi, M.A. Basha, Effect of heat-treatment on the electrical and dielectric properties of a TiO2-containing lithia–calcia–silica glass and glass ceramics. Mater. Chem. Phys. 129, 1233–1239 (2011)

    Article  Google Scholar 

  31. 31.

    A. El-Kheshen, M. Zawrah, Sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 29, 251–257 (2003)

    Article  Google Scholar 

  32. 32.

    X. Zhang, H. Wen, X. Chen, Y. Wu, S. Xiao, Study on the thermal and dielectric properties of SrTiO3/epoxy nanocomposites. Energies 10, 692 (2017)

    Article  Google Scholar 

  33. 33.

    R.M. Morsi, S. Ibrahim, S. Abo-Naf, M.M. Morsi, Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates. J. Mater. Sci. 27, 4147–4156 (2016)

    Google Scholar 

  34. 34.

    U. Megha, G. Varghese, K. Shijina, Room temperature AC impedance and dielectric studies of Bi and Sr doped PrCo0.6Fe0.4O3 perovskites. Process. Appl. Ceram. 11, 52–59 (2017)

    Article  Google Scholar 

  35. 35.

    S. Jin, L. Wang, Z. Wang, B. Huang, Q. Zhang, Z. Fu, Dielectric properties of modified SrTiO3/PTFE composites for microwave RF antenna applications. J. Mater. Sci. 26, 7431–7437 (2015)

    Google Scholar 

  36. 36.

    A. Kumar, U. Naithani, B. Semwal, Dielectric behaviour of BaxSr1–xTiO3 perovskites. Sri Lankan J. Phys. 3, 63–73 (2002)

    Article  Google Scholar 

  37. 37.

    R. Henson, A. Pointon, Growth of single crystal Ba0.65Sr0.35TiO3 by solvent zone melting. J. Cryst. Growth 26, 174–176 (1974)

    Article  Google Scholar 

  38. 38.

    S. Miura, M. Marutake, H. Unoki, H. Uwe, T. Sakudo, Composition dependence of the phase transition temperatures in the mixed crystal systems near SrTiO3. J. Phys. Soc. Jpn. 38, 1056–1060 (1975)

    Article  Google Scholar 

  39. 39.

    A. Lurio, E. Stern, Measurements of the dielectric constant of BaTiO3 single crystals in the paraelectric region at X band. J. Appl. Phys. 31, 1805–1809 (1960)

    Article  Google Scholar 

  40. 40.

    O. Thakur, D. Kumar, O. Parkash, L. Pandey, Dielectric and microstructural behaviour of strontium titanate borosilicate glass ceramic system. Bull. Mater. Sci. 18, 577–585 (1995)

    Article  Google Scholar 

  41. 41.

    S.A. Abdel-Hameed, R.M. Morsi, F.H. Margha, Preparation, crystallization and electrical properties of 35CuO·(35 − X) MnO·XBi2O3·30SiO2 system (X = 0–20 mol%). J. Mater. Sci. 28, 4351–4361 (2017)

    Google Scholar 

  42. 42.

    G. Devidas, T. Sankarappa, M.P. Kumar, S. Kumar, AC conductivity in rare earth ions doped vanadophosphate glasses. J. Mater. Sci. 43, 4856–4861 (2008)

    Article  Google Scholar 

  43. 43.

    K.B. Naidu, T.S. Sarmash, M. Maddaiah, A.G. Kumar, D.J. Rani, V.S. Samyuktha, L. Obulapathi, T. Subbarao, Structural and electrical properties of PbO-doped SrTiO3 ceramics. J. Ovonic Res. 11, 79–84 (2015)

    Google Scholar 

  44. 44.

    A. Prasad, A. Basu, Dielectric and impedance properties of sintered magnesium aluminum silicate glass-ceramic. J. Adv. Ceram. 2, 71–78 (2013)

    Article  Google Scholar 

  45. 45.

    X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, Z. Zhu, Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs. J. Power Sources 166, 47–52 (2007)

    Article  Google Scholar 

  46. 46.

    T. Miruszewski, B. Trawiński, M. Gałka, J. Morzy, B. Bochentyn, J. Karczewski, P. Gdaniec, M. Gazda, B. Kusz, Correlation between structural and electrical properties in highly porous (Y, Sr)(Ti, Nb) O3 − δ SOFC anodes. Mater. Sci. 32, 331–340 (2014)

    Google Scholar 

  47. 47.

    J. Karczewski, B. Riegel, M. Gazda, P. Jasinski, B. Kusz, Electrical and structural properties of Nb-doped SrTiO3 ceramics. J. Electroceram. 24, 326–330 (2010)

    Article  Google Scholar 

  48. 48.

    A. Singh, K. Prasad, A. Prasad, Effects of Sr2+ doping on the electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Process. Appl. Ceram. 9, 33–42 (2015)

    Article  Google Scholar 

  49. 49.

    V. Sharma, R. Kaur, M. Singh, R. Selvamani, S.M. Gupta, V.S. Tiwari, A. Karnal, A. Singh, Conductivity relaxation and oxygen vacancies-related electron hopping mechanism in Pb1-xLax/2Smx/2Ti1-xFexO3 solid solutions. J. Asian Ceram. Soc. 6, 222–231 (2018)

    Article  Google Scholar 

  50. 50.

    E.L. Korn, R. Simon, Explained residual variation, explained risk, and goodness of fit. Am. Stat. 45, 201–206 (1991)

    Google Scholar 

  51. 51.

    J. Stare, Some properties of R2 in ordinary least squares regression, in Contributions to Methodology and Statistics, ed. by A. Ferligoj, A. Kramberger (FDV, Ljubljana, 1995), pp. 133–145

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fatma H. Margha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Margha, F.H., Morsi, R.M.M. & Hamzawy, E.M.A. Characterization and electrical properties of tausonite (SrTiO3) in nano ceramic composites. J Mater Sci: Mater Electron 30, 16257–16265 (2019). https://doi.org/10.1007/s10854-019-01996-5

Download citation