Electromagnetic and microwave absorption performance of Ni0.4Zn0.4Co0.2Fe2O4/polymethacrylimide foam synthesized via polymerization


In this paper, the effect of nickel–zinc–cobalt ferrite (NZCFO) content on the electromagnetic properties of polymethacrylimide (PMI)/NZCFO was studied. The functional nano-composite was successfully synthesized via novel suspension polymerization. Subsequently, the presence of functional groups and microstructure was investigated by Fourier transform-infrared spectroscopy and scanning electron microscopy, respectively. Based on electromagnetic analysis, it is found that the compressive strength and the entire X-band of the composite foam (thickness greater than 27 mm) reach to 2.6 MPa and an effective bandwidth (RL < − 10 dB) when the NZCFO content is 30 wt% of the reactive monomer. The analysis confirmed that the PMI/NZCFO (PMI/FO) foam composites enable the loss of an electromagnetic wave through the natural resonance effect of NZCFO. At the same time, the interwoven network structure and the cascade structure have a certain promotion effect on the loss of electromagnetic wave due to porous morphology of PMI foam. The synergetic effect of NZCFO and PMI shows the composite material owes significantly improved electromagnetic and microwave absorption performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Q. Zhang, C. Liu, Z. Wu, Y. Yang, Z. Xie, H. Zhou, C. Chen, Preparation of rGO/PVA/CIP composites and their microwave absorption properties. J. Magn. Magn. Mater. 479, 337–343 (2019)

    Article  Google Scholar 

  2. 2.

    J. Zhang, R. Shu, C. Guo, R. Sun, Y. Chen, J. Yuan, Fabrication of nickel ferrite microspheres decorated multi-walled carbon nanotubes hybrid composites with enhanced electromagnetic wave absorption properties. J. Alloy. Compd. 784, 422–430 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    Y. Wu, R. Shu, Z. Li, C. Guo, G. Zhang, J. Zhang, W. Li, Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites. J. Alloy. Compd. 784, 887–896 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    S. Acharya, J. Ray, T.U. Patro, P. Alegaonkar, S. Datar, Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology 29, 115605 (2018)

    Article  Google Scholar 

  5. 5.

    C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. 136, 47241 (2019)

    Google Scholar 

  6. 6.

    T. Han, R. Luo, G. Cui, L. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 39, 1743–1756 (2019)

    CAS  Article  Google Scholar 

  7. 7.

    Y. Qian, Z. Yao, H. Lin, J. Zhou, Mechanical and microwave absorption properties of 3D-printed Li044Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling. J. Mater. Sci. 29, 19296–19307 (2018)

    CAS  Google Scholar 

  8. 8.

    R. Meng, T. Zhang, H. Yu, J. Zhang, G. Wen, X. Huang, L. Huang, L. Xia, B. Zhong, A facile coprecipitation method to synthesize FexOy/Fe decorated graphite sheets with enhanced microwave absorption properties. Nanotechnology. 30, 185704 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    Y. Lin, J. Wang, H. Yang, L. Wang, In situ preparation of PANI/ZnO/CoFe2O4 composite with enhanced microwave absorption performance. J. Mater. Sci. 28, 17968–17975 (2017)

    CAS  Google Scholar 

  10. 10.

    K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    A.N. Hapishah, M.M. Syazwan, M.N. Hamidon, Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J. Mater. Sci. 29, 20573–20579 (2018)

    CAS  Google Scholar 

  12. 12.

    Y. Lei, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, P. Liu, The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. Rsc Adv. 8, 29344–29355 (2018)

    CAS  Article  Google Scholar 

  13. 13.

    X. Meng, Q. Han, Y. Sun, Y. Liu, Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite. Ceram. Int. 45, 2504–2508 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    J.T. Siivola, S. Minakuchi, N. Takeda, Effect of temperature and humidity conditions on polymethacrylimide (PMI) foam core material and indentation response of its sandwich structures. J. Sandw. Struct. Mater. 17, 335–358 (2015)

    CAS  Article  Google Scholar 

  15. 15.

    Y. Duan, Y. Liu, Y. Cui, G. Ma, T. Wang, Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating. Prog. Org. Coat. 125, 89–98 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    B. Heidari, M. Ansari, A. Hoseinabadi, H. Jiriaee, F. Heidary, The effect of ZnO, Fe3O4 and graphene oxide nanostructures on the microwave absorbing properties of polystyrene composites. J. Mater. Sci. 28, 1028–1037 (2017)

    CAS  Google Scholar 

  17. 17.

    Q. Yu, Z. Wang, P. Chen, Q. Wang, Y. Wang, M. Ma, Microwave absorbing and mechanical properties of carbon fiber/bismaleimide composites imbedded with Fe@C/PEK-C nano-membranes. J. Mater. Sci. 30, 308–315 (2019)

    CAS  Google Scholar 

  18. 18.

    T. Apeldorn, C. Keilholz, F. Wolff-Fabris, V. Altstaedt, Dielectric properties of highly filled thermoplastics for printed circuit boards. J. Appl. Polym. Sci. 128, 3758–3770 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    L. Qiu, X.H. Zheng, J. Zhu, D.W. Tang, S.Y. Yang, A.J. Hu, L.L. Wang, S.S. Li, Thermal transport in high-strength polymethacrylimide (PMI) foam insulations. Int. J. Thermophys. 36, 2523–2534 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    H. Lu, A. Zhang, Y. Zhang, L. Ding, Y. Zheng, The effect of polymer polarity on the microwave absorbing properties of MWNTs. Rsc Adv. 5, 64925–64931 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    H.Y. Tang, X.B. Rao, Effects of multiple crosslinking agents on structure and properties of polymethacrylimide (PMI) foams. Mater. Res. Innov. 182, 473–477 (2014)

    Google Scholar 

  22. 22.

    Z. Zhang, M. Xu, B. Li, Research on rapid preparation and performance of polymethacrylimide foams. J. Appl. Polym. Sci. 134, 44683 (2017)

    Google Scholar 

  23. 23.

    H. Tang, Q. Chen, X. Rao, Study on foaming of PMI foam materials. J. Optoelectron. Adv. Mater. 16, 624–628 (2014)

    Google Scholar 

  24. 24.

    Z. Zhang, M. Xu, B. Li, Preparation and characterization of polymethacrylimide/silicate foam. Polym. Adv. Technol. 29, 2982–2991 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Y. Lei, Z. Yao, H. Lin, A.A. Haidry, J. Zhou, P. Liu, Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites. Mater. Lett. 236, 456–459 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4, 9738–9749 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    M. Du, Z. Yao, J. Zhou, P. Liu, T. Yao, R. Yao, Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li03.5Zn03Fe2.35O4 nanocomposite. Synth. Met. 223, 49–57 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Z. Yang, M. Li, Y. Zhang, X. Lyu, D. Hu, Hierarchical formation mechanism of anisotropic magnetite microflakes and their superior microwave attenuation properties. J. Alloy. Compd. 781, 321–329 (2019)

    CAS  Article  Google Scholar 

  30. 30.

    P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interface 9, 16404–16416 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    T.S. Lin, L.G. Sobotka, W. Froncisz, Superconductivity and microwave absorption. Nature 333, 21–22 (1988)

    CAS  Article  Google Scholar 

  32. 32.

    S.J. Webb, A.D. Booth, Absorption of microwaves by microorganisms. Nature 222, 1199–1200 (1969)

    CAS  Article  Google Scholar 

  33. 33.

    T. Qi, Z. Yao, J. Zhou, H. Lin, P. Liu, Y. Lei, Y. Zuo, Interfacial polymerization preparation of polyaniline fibers/Co0.2Ni0.4Zn0.4Fe2O4 urchin-like composite with superior microwave absorption performance. J. Alloy. Compd. 769, 669–677 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)

    CAS  Article  Google Scholar 

  35. 35.

    Z. Wang, H. Bi, P. Wang, M. Wang, Z. Liu, L. Shen, X. Liu, Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    P.C. Kim, D.G. Lee, Composite sandwich constructions for absorbing the electromagnetic waves. Compos. Struct. 87, 161–167 (2009)

    Article  Google Scholar 

  37. 37.

    X. Liu, H. Lu, L. Xing, Morphology and microwave absorption of carbon nanotube/bismaleimide foams. J. Appl. Polym. Sci. 131, 40233 (2014)

    Google Scholar 

  38. 38.

    P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, L.B. Kong, Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. J. Alloy. Compd. 701, 841–849 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu, J.P. Lei, J.P. Sun, Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 320, 1106–1111 (2008)

    CAS  Article  Google Scholar 

  40. 40.

    J. Dong, Y. Lin, H. Zong, H. Yang, L. Wang, Z. Dai, Three-dimensional architecture reduced graphene oxide-LiFePO4 composite: preparation and excellent microwave absorption performance. Inorg. Chem. 58, 2031–2041 (2019)

    CAS  Article  Google Scholar 

  41. 41.

    Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J. Mater. Sci. 27, 1031–1043 (2016)

    CAS  Google Scholar 

  42. 42.

    H. Lv, H. Zhang, G. Ji, Z.J. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interface 8, 6529–6538 (2016)

    CAS  Article  Google Scholar 

  43. 43.

    L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber. J. Colloid Interface Sci. 540, 30–38 (2019)

    CAS  Article  Google Scholar 

  44. 44.

    J. Dai, H. Yang, B. Wen, H. Zhou, L. Wang, Y. Lin, Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Appl. Surf. Sci. 479, 1226–1235 (2019)

    CAS  Article  Google Scholar 

  45. 45.

    Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018)

    CAS  Article  Google Scholar 

  46. 46.

    K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos. Sci. Technol. 66, 576–584 (2006)

    CAS  Article  Google Scholar 

Download references


This work is supported by the National Natural Science Foundation of China (51702158), the Fundamental Research Funds for the Central Universities (NP2018111), Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology No. 56XCA18159-3.

Author information



Corresponding author

Correspondence to Zhengjun Yao.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Yao, Z., Lin, H. et al. Electromagnetic and microwave absorption performance of Ni0.4Zn0.4Co0.2Fe2O4/polymethacrylimide foam synthesized via polymerization. J Mater Sci: Mater Electron 30, 16991–17002 (2019). https://doi.org/10.1007/s10854-019-01995-6

Download citation