Skip to main content

Advertisement

Log in

Construction of CuO/CdS composite nanostructure for photodegradation of pollutants in sewage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The composite of semiconductor photocatalytic materials can effectively improve the solar energy utilization efficiency and quantum efficiency. Therefore, composite semiconductor materials have gradually become one of the most promising photocatalyst for solving water pollution problems. In this work, CuO nanowire arrays were prepared on Cu substrate by a thermal oxidation method, then CuO/CdS composite nanostructure was synthesized through an SILAR technique sequentially. The morphology, micro-area element composition, phase structure and optical properties of CuO/CdS nanostructure were characterized by field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, ultraviolet–visible and photoluminescence spectroscopy respectively. Based on the test results, we systematically discussed the effects of several experimental conditions such as copper substrate, annealing temperature and reaction time on the properties and structure of CuO/CdS composite nanostructure. The resultant binary CuO/CdS composite nanostructure exhibited more excellent photocatalytic activity than pure CuO nanowire arrays both in the photodegradation of simulated contaminant methylene blue (MB) and practical pollutants of sewage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452(7185), 301–310 (2008)

    Article  Google Scholar 

  2. L.H. Yu, Y. Huang, G.C. Xiao, D.Z. Li, Application of long wavelength visible light (lambda > 650 nm) in photocatalysis with a p-CuO-n-In2O3 quantum dot heterojunction photocatalyst. J. Mater. Chem. A 1(34), 9637–9640 (2013)

    Article  Google Scholar 

  3. P. Liu, R. Bao, D. Fang, J. Yi, L. Li, A facile synthesis of CNTs/Cu2O-CuO heterostructure composites by spray pyrolysis and its visible light responding photocatalytic properties. Adv. Powder Technol. 29(9), 2027–2034 (2018)

    Article  Google Scholar 

  4. Y.C. Chang, J.Y. Guo, C.M. Chen, H.W. Di, C.C. Hsu, Construction of CuO/In2S3/ZnO heterostructure arrays for enhanced photocatalytic efficiency. Nanoscale 9(35), 13235–13244 (2017)

    Article  Google Scholar 

  5. H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012)

    Article  Google Scholar 

  6. D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46(11), 3669–3686 (2011)

    Article  Google Scholar 

  7. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)

    Article  Google Scholar 

  8. J.W. Kang, B.H. Kim, H. Song, Y.R. Jo, S.H. Hong, G.Y. Jung, B.J. Kim, S.J. Park, C.H. Cho, Radial multi-quantum well ZnO nanorod arrays for nanoscale ultraviolet light-emitting diodes. Nanoscale 10(31), 14812–14818 (2018)

    Article  Google Scholar 

  9. P. Ghamgosar, F. Rigoni, S.J. You, I. Dobryden, M.G. Kohan, A.L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, A. Vomiero, ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors. Nano Energy 51, 308–316 (2018)

    Article  Google Scholar 

  10. J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014)

    Article  Google Scholar 

  11. J. Tian, P. Hao, N. Wei, H.Z. Cui, H. Liu, 3D Bi2MoO6 Nanosheet/TiO2 Nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catal 5(8), 4530–4536 (2015)

    Article  Google Scholar 

  12. Y. Xie, J.F. Wu, G.J. Jing, H. Zhang, S.H. Zeng, X.P. Tan, X.Y. Zou, J. Wen, H.Q. Su, C.J. Zhong, P.X. Cui, Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B 239, 665–676 (2018)

    Article  Google Scholar 

  13. Y. Ma, C.Y. Zhang, P. Yang, X.Y. Li, L.L. Tong, F. Huang, J.Y. Yue, B. Tang, A CuO-functionalized NMOF probe with a tunable excitation wavelength for selective detection and imaging of H2S in living cells. Nanoscale 10(33), 15793–15798 (2018)

    Article  Google Scholar 

  14. S. Noothongkaew, O. Thumthan, K.S. An, UV-photodetectors based on CuO/ZnO nanocomposites. Mater. Lett. 233, 318–323 (2018)

    Article  Google Scholar 

  15. Y. Zhu, X. Zhou, J.B. Xu, X.X. Ma, Y.H. Ye, G.C. Yang, K.L. Zhang, In situ preparation of explosive embedded CuO/Al/CL20 nanoenergetic composite with enhanced reactivity. Chem. Eng. J. 354, 885–895 (2018)

    Article  Google Scholar 

  16. M.T. Greiner, J. Cao, T.E. Jones, S. Beeg, K. Skorupska, E.A. Carbonio, H. Sezen, M. Amati, L. Gregoratti, M.G. Willinger, A. Knop-Gericke, R. Schlogl, Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal. 8(3), 2286–2295 (2018)

    Article  Google Scholar 

  17. J.J.D. Leon, D.M. Fryauf, R.D. Cormia, M.X.M. Zhang, K. Samuels, R.S. Williams, N.P. Kobayashi, Reflectometry-ellipsometry reveals thickness, growth rate, and phase composition in oxidation of copper. ACS Appl. Mater. Int. 8(34), 22337–22344 (2016)

    Article  Google Scholar 

  18. J. Shah, M. Ranjan, S.K. Gupta, A. Satyaprasad, S. Chaki, Y. Sonvane, Reaction temperature dependent shape-controlled studies of copper-oxide nanocrystals. Mater. Res. Express 5(6), 645–656 (2018)

    Article  Google Scholar 

  19. N. Abraham, A. Rufus, C. Unni, D. Philip, Dye sensitized solar cells using catalytically active CuO-ZnO nanocomposite synthesized by single step method. Spectrochim. Acta A 200, 116–126 (2018)

    Article  Google Scholar 

  20. S.H. Wu, G.L. Fu, W.Q. Lv, J.K. Wei, W.J. Chen, H.Q. Yi, M. Gu, X.D. Bai, L. Zhu, C. Tan, Y.C. Liang, G.L. Zhu, J.R. He, X.Q. Wang, K.H.L. Zhang, J. Xiong, W.D. He, A single-step hydrothermal route to 3D hierarchical Cu2O/CuO/rGO nanosheets as high-performance anode of lithium-ion batteries. Small 14(5), 1702667 (2018)

    Article  Google Scholar 

  21. L. Manjakkal, C.G. Nunez, W.T. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018)

    Article  Google Scholar 

  22. K.D. Diao, J. Xiao, Z. Zheng, X.D. Cui, Enhanced sensing performance and mechanism of CuO nanoparticle-loaded ZnO nanowires: comparison with ZnO-CuO core-shell nanowires. Appl. Surf. Sci. 459, 630–638 (2018)

    Article  Google Scholar 

  23. Q. Xin, A. Papavasilou, N. Boukos, A. Glisenti, J.P.H. Li, Y. Yang, C.J. Philippopoulos, E. Poulakis, F.K. Katsaros, V. Meynen, P. Cool, Preparation of CuO/SBA-15 catalyst by the modified ammonia driven deposition precipitation method with a high thermal stability and an efficient automotive CO and hydrocarbons conversion. Appl. Catal. B 223, 103–115 (2018)

    Article  Google Scholar 

  24. S. Das, V.C. Srivastava, An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnol. Rev. 7(3), 267–282 (2018)

    Article  Google Scholar 

  25. Z.F. Wang, F. Li, H.T. Wang, A. Wang, S.M. Wu, An enhanced ultra-fast responding ethanol gas sensor based on Ag functionalized CuO nanoribbons at room-temperature. J. Mater. Sci. 29(19), 16654–16659 (2018)

    Google Scholar 

  26. R. Ranjbar-Karimi, A. Bazmandegan-Shamili, A. Aslani, K. Kaviani, Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles. Physica B 405(15), 3096–3100 (2010)

    Article  Google Scholar 

  27. D.Y. Han, H.Y. Yang, C.Y. Zhu, F.H. Wang, Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles. Powder Technol. 185(3), 286–290 (2008)

    Article  Google Scholar 

  28. T. Xu, W. Jin, Z.Z. Wang, H.Y. Cheng, X.H. Huang, X.Y. Guo, Y. Ying, Y.P. Wu, F. Wang, Y. Wen, H.F. Yang, Electrospun CuO-nanoparticles-modified polycaprolactone@polypyrrole fibers: an application to sensing glucose in saliva. Nanomater. Basel 8(3), 133 (2018)

    Article  Google Scholar 

  29. B.W. Zhang, G. Yang, C.J. Li, K. Huang, J.S. Wu, S.J. Hao, Y.Z. Huang, Electrochemical behaviors of hierarchical copper nano-dendrites in alkaline media. Nano Res. 11(8), 4225–4231 (2018)

    Article  Google Scholar 

  30. J.J.Y. Sung, S.C. Ng, F.K.L. Chan, H.M. Chiu, H.S. Kim, T. Matsuda, S.S.M. Ng, J.Y.W. Lau, S. Zheng, S. Adler, N. Reddy, K.G. Yeoh, K.K.F. Tsoi, J.Y.L. Ching, E.J. Kuipers, L. Rabeneck, G.P. Young, R.J. Steele, D. Lieberman, K.L. Goh, An updated asia pacific consensus recommendations on colorectal cancer screening. Gut 64(1), 121–132 (2015)

    Article  Google Scholar 

  31. X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li, X.Z. Fu, Doping effects of Co(2+) ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 19(21), 215703 (2008)

    Article  Google Scholar 

  32. L.H. Yu, W. Chen, D.Z. Li, J.B. Wang, Y. Shao, M. He, P. Wang, X.Z. Zheng, Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Appl. Catal. B 164, 453–461 (2015)

    Article  Google Scholar 

  33. Y. Zhu, R. Wang, W. Zhang, H. Ge, L. Li, CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical property. Appl. Surf. Sci. 315, 149–153 (2014)

    Article  Google Scholar 

  34. L. Yuan, Y. Wang, R. Mema, G. Zhou, Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59(6), 2491–2500 (2011)

    Article  Google Scholar 

  35. R. Mema, L. Yuan, Q. Du, Y. Wang, G. Zhou, Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512(1–3), 87–91 (2011)

    Article  Google Scholar 

  36. Y.H. Zhang, Y.L. Li, B.B. Jiu, F.L. Gong, J.L. Chen, S.M. Fang, H.L. Zhang, Highly enhanced photocatalytic H2 evolution of Cu2O microcube by coupling with TiO2 nanoparticles. Nanoscale 30, 145401 (2019)

    Google Scholar 

  37. J.L. Chen, P. Gao, H. Wang, L.F. Han, Y.H. Zhang, P.Y. Wang, N.Q. Jia, A PPy/Cu2O molecularly imprinted composite film-based visible light-responsive photoelectrochemical sensor for microcystin-LR. J. Mater. Chem. C 6(15), 3937–3944 (2018)

    Article  Google Scholar 

  38. J.L. Chen, H. Wang, G.L. Huang, Z.Q. Zhang, L.F. Han, W. Song, M.Y. Li, Y.H. Zhang, Facile synthesis of urchin-like hierarchical Nb2O5 nanospheres with enhanced visible light photocatalytic activity. J. Alloys Compd. 728, 19–28 (2017)

    Article  Google Scholar 

  39. J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457), 1471–1473 (2000)

    Article  Google Scholar 

  40. W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, Microstructures of gallium nitride nanowires synthesized by oxide-assisted method. Chem. Phys. Lett. 345(5–6), 377–380 (2001)

    Article  Google Scholar 

  41. X.C. Jiang, T. Herricks, Y.N. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2(12), 1333–1338 (2002)

    Article  Google Scholar 

  42. Y.L. Cao, P.F. Hu, D.Z. Jia, Phase- and shape-controlled hydrothermal synthesis of CdS nanoparticles, and oriented attachment growth of its hierarchical architectures. Appl. Surf. Sci. 265, 771–777 (2013)

    Article  Google Scholar 

  43. Y.Q. Wang, T.T. Jiang, D.W. Meng, D.G. Wang, M.H. Yu, Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method. Appl. Surf. Sci. 355, 191–196 (2015)

    Article  Google Scholar 

  44. A.A. Dubale, W.N. Su, A.G. Tamirat, C.J. Pan, B.A. Aragaw, H.M. Chen, C.H. Chen, B.J. Hwang, The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J. Mater. Chem. A 2(43), 18383–18397 (2014)

    Article  Google Scholar 

  45. W. Septina, R.R. Prabhakar, R. Wick, T. Moehl, S.D. Tilley, Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes. Chem. Mater. 29(4), 1735–1743 (2017)

    Article  Google Scholar 

  46. A.A. El Mel, M. Buffière, N. Bouts, E. Gautron, P.Y. Tessier, K. Henzler, Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires. Nanotechnology 24(26), 265603 (2013)

    Article  Google Scholar 

  47. G. Sun, Y. Zhang, Q. Kong, X. Zheng, J. Yu, X. Song, CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink. Biosens. Bioelectron. 66, 565–571 (2015)

    Article  Google Scholar 

  48. L. Xia, L. Xu, J. Song, R. Xu, D. Liu, B. Dong, CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor. Sci Rep 5, 10838 (2015)

    Article  Google Scholar 

  49. J.M. Du, M.K. Yang, F.F. Zhang, X.C. Cheng, H.R. Wu, H.C. Qin, Q.S. Jian, X.L. Lin, K.D. Li, D.J. Kang, Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO2-based photoanodes for photoelectrochemical water splitting. Ceram. Int. 44(3), 3099–3106 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Open Research Foundation of Engineering Research Center of Nano-Geomaterials of Ministry of Education (No. NGM2019KF026) and Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (No. 2017B030301012). The financial support was gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Wang, T., Wang, B. et al. Construction of CuO/CdS composite nanostructure for photodegradation of pollutants in sewage. J Mater Sci: Mater Electron 30, 15989–15999 (2019). https://doi.org/10.1007/s10854-019-01969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01969-8

Navigation