Skip to main content

Advertisement

Log in

Development of SnSe thin films through selenization of sputtered Sn-metal films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin monoselenide (SnSe) thin films with thickness in the range of 0.72–1.00 μm were prepared by the two-stage process (metallization by sputtering + selenization by rapid thermal annealing) using Sn target and selenium powder at different selenization temperatures in the range of 300–450 °C. The formation of single-phase orthorhombic(OR)-SnSe films at ≥ 400 °C was observed, whereas the secondary phase of SnSe2 in addition to OR-SnSe was formed when the films selenized at ≤ 350 °C. The single-phase OR-SnSe films exhibited Raman modes at 33 cm−1, 71 cm−1, 108 cm−1, 130 cm−1, and 151 cm−1. The crystallinity and grain size of the OR-SnSe films were improved with increasing of selenization temperature. The tin films selenized at 400 °C showed the composition ratio of Se/Sn = 0.99, the direct bandgap energy of 1.2 eV, and the p-type conductivity with electrical resistivity of 12.71 Ω cm, the mobility of 2.03 cm2 V−1 s−1, and carrier concentration of 2.42 × 1017 cm−3. The above opto-electronic properties of single-phase OR-SnSe films selenized at 400 °C indicated that these films could be used to attain good device efficiency of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Chandran, S.K. Panda, A. Mallik, Mater. Renew. Sustain. Energy 7, 6 (2018)

    Article  Google Scholar 

  2. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi (RRL) 10, 583 (2016)

    Article  Google Scholar 

  3. Andy Colthorpe, Solar Frontier (2019). https://www.pv-tech.org/news/solar-frontier-achieves-cis-thin-film-efficiency-record-of-23.35

  4. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha, Adv. Energy Mater. 5, 1401372 (2015)

    Article  Google Scholar 

  5. H. Lee, D. Jeong, T. Mun, B. Pejjai, V.R.M. Reddy, T.J. Anderson, C. Park, Korean J. Chem. Eng. 33, 2486 (2016)

    Article  Google Scholar 

  6. R. Indirajith, T.P. Srinivasan, K. Ramamurthi, R. Gopalakrishnan, Curr. Appl. Phys. 10, 1402 (2010)

    Article  Google Scholar 

  7. E. Barrios-Salgado, M.T.S. Nair, P.K. Nair, ECS J. Solid State Sci. Technol. 3, Q169 (2014)

    Article  Google Scholar 

  8. V.R.M. Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci. 27, 5491 (2016)

    Google Scholar 

  9. D.I. Bletskan, J. Ovonic Res. 1, 61 (2005)

    Google Scholar 

  10. W. Shockley, H.J. Queisser, J. Appl. Phys. 32, 510 (1961)

    Article  Google Scholar 

  11. V.R.M. Reddy, G. Lindwall, B. Pejjai, S. Gedi, T.R.R. Kotte, M. Sugiyama, Z.-K. Liu, C. Park, Sol. Energy Mater. Sol. Cells 176, 251 (2018)

    Article  Google Scholar 

  12. N.R. Mathews, Sol. Energy 86, 1010 (2012)

    Article  Google Scholar 

  13. K. Bindu, P.K. Nair, Semicond. Sci. Technol. 19, 1348 (2004)

    Article  Google Scholar 

  14. C. Guillén, J. Montero, J. Herrero, Phys. Status Solidi (A) 208, 679 (2011)

    Article  Google Scholar 

  15. S. Delice, M. Isik, H.H. Gullu, M. Terlemezoglu, O.B. Surucu, M. Parlak, N.M. Gasanly, J. Phys. Chem. Solids 131, 22 (2019)

    Article  Google Scholar 

  16. T.S. Shyju, S. Anandhi, R. Indirajith, R. Gopalakrishnan, J. Cryst. Growth 337, 38 (2011)

    Article  Google Scholar 

  17. T.S. Rao, A.K. Chaudhuri, Bull. Mater. Sci. 19, 449 (1996)

    Article  Google Scholar 

  18. T. Terada, J. Phys. D 4, 1991 (1971)

    Article  Google Scholar 

  19. V.E. Drozd, I.O. Nikiforova, V.B. Bogevolnov, A.M. Yafyasov, E.O. Filatova, D. Papazoglou, J. Phys. D 42, 125306 (2009)

    Article  Google Scholar 

  20. Z. Zainal, N. Saravanan, K. Anuar, M.Z. Hussein, W.M.M. Yunus, Mater. Sci. Eng. B 107, 181 (2004)

    Article  Google Scholar 

  21. M. Edoff, Ambio 41, 112 (2012)

    Article  Google Scholar 

  22. S. Boone, O.J. Kleppa, Thermochim. Acta 197, 109 (1992)

    Article  Google Scholar 

  23. S. Anwar, S. Gowthamaraju, B.K. Mishra, S.K. Singh, S. Anwar, Mater. Chem. Phys. 153, 236 (2015)

    Article  Google Scholar 

  24. A.G. De la Torre, M.A.G. Aranda, J. Appl. Crystallogr. 36, 1169 (2003)

    Article  Google Scholar 

  25. A. Altomare, F. Capitelli, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, Crystals 8, 203 (2018)

    Article  Google Scholar 

  26. B.H. Toby, Powder Diffr. 21, 67 (2006)

    Article  Google Scholar 

  27. S. Chen, K. Cai, W. Zhao, Phys. B 407, 4154 (2012)

    Article  Google Scholar 

  28. L.L. Baranowski, P. Zawadzki, S. Lany, E.S. Toberer, A. Zakutayev, Semicond. Sci. Technol. 31, 123004 (2016)

    Article  Google Scholar 

  29. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  30. D.G. Mead, J.C. Irwin, Solid State Commun. 20, 885 (1976)

    Article  Google Scholar 

  31. H.R. Chandrasekhar, R.G. Humphreys, U. Zwick, M. Cardona, Phys. Rev. B 15, 2177 (1977)

    Article  Google Scholar 

  32. P.A. Fernandes, M.G. Sousa, P.M.P. Salomé, J.P. Leitão, A.F. Da Cunha, CrystEngComm 15, 10278 (2013)

    Article  Google Scholar 

  33. N. kumar, U. Parihar, R. Kumar, K.J. Patel, C.J. Panchal, N. Padha, Am. J. Mater. Sci. 2, 41 (2012)

    Article  Google Scholar 

  34. K. Assili, O. Gonzalez, K. Alouani, X. Vilanova, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.10.004

    Google Scholar 

  35. Y. Gupta, P. Arun, J. Semicond. 38, 113001 (2017)

    Article  Google Scholar 

  36. J. Tauc, A. Menth, J. Non-Cryst. Solids 8–10, 569 (1972)

    Article  Google Scholar 

  37. G. Jeong, J. Kim, O. Gunawan, S.R. Pae, S.H. Kim, J.Y. Song, Y.S. Lee, B. Shin, J. Alloys Compd. 722, 474 (2017)

    Article  Google Scholar 

  38. D. Martínez-Escobar, M. Ramachandran, A. Sánchez-Juárez, J.S.N. Rios, Thin Solid Films 535, 390 (2013)

    Article  Google Scholar 

  39. A.T. Duong, V.Q. Nguyen, G. Duvjir, V.T. Duong, S. Kwon, J.Y. Song, J.K. Lee, J.E. Lee, S. Park, T. Min, J. Lee, J. Kim, S. Cho, Nat. Commun. 7, 13713 (2016)

    Article  Google Scholar 

  40. V.R.M. Reddy, M.R. Pallavolu, P.R. Guddeti, S. Gedi, K.K.Y.B. Reddy, B. Pejjai, W.K. Kim, T.R.R. Kotte, C. Park, J. Ind. Eng. Chem. 76, 39 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by “The Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20173010012980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinho Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallavolu, M.R., Minnam Reddy, V.R., Guddeti, P.R. et al. Development of SnSe thin films through selenization of sputtered Sn-metal films. J Mater Sci: Mater Electron 30, 15980–15988 (2019). https://doi.org/10.1007/s10854-019-01968-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01968-9

Navigation