Influence of synthesis method on the structural, optical and magnetic properties of BiFeO3–ZnFe2O4 nanocomposites

Abstract

In this study, single-phase polycrystalline (1 − x)BiFeO3–xZnFe2O4 (BFO–ZFO, x = 0, 0.5, 1) nanocomposites have been synthesized by sol–gel (SG) and hydrothermal (HT) methods and the effect of synthesis method on structural, optical and magnetic properties of all products have been studied. The as-prepared samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) images, diffuse reflectance UV–Vis spectroscopy (DRS) and vibrating sample magnetometer (VSM). XRD patterns reveal the rhombohedrally-distorted perovskite phase of bismuth ferrite and the cubic spinel phase of zinc ferrite. The crystallite size and micro-strain of nanograins were calculated using Scherrer formula and Williamson–Hall analysis. FTIR analysis confirms ferrite phases and the functional groups in the wavenumber range of 400–4000 cm−1 were observed. SEM analysis confirmed the agglomerated nature of the particles with continuous grain growth in all directions. Magnetic hysteresis loops also showed the weak ferromagnetic behavior of BFO and paramagnetic (SG_ZFO) and superparamagnetic (HT_ZFO) behavior of zinc ferrite depending on their synthesis method at room temperature (RT). Remarkably, SG_BFO–ZFO nanocomposite also has a little more magnetization compared with pure BFO and ZFO nanoparticles. Finally, characteristic measurements indicated that the as-prepared nanoparticles, depending on their preparation route, behave differently.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science (New York, N.Y.) 299(5613), 1719 (2003)

    CAS  Article  Google Scholar 

  2. 2.

    N.A. Hill, J. Phys. Chem. B 104(29), 6694 (2000)

    CAS  Article  Google Scholar 

  3. 3.

    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442(7104), 759 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    H. Maleki, M. Haselpour, R. Fathi, J. Mater. Sci.: Mater. Electron. 29(5), 4320 (2018)

    CAS  Google Scholar 

  6. 6.

    H. Maleki, J. Magn. Magn. Mater. 458, 277 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    H. Maleki, J. Mater. Sci.: Mater. Electron. 29(14), 11862 (2018)

    CAS  Google Scholar 

  8. 8.

    J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integr. Ferroelectr. 126(1), 47 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    L. Bian, Y. Li, J. Li, J. Nie, F. Dong, M. Song, L. Wang, H. Dong, H. Li, X. Nie, X. Zhang, X. Li, L. Xie, J. Hazard. Mater. 336, 174 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, J. Ihlefeld, C. Adamo, A. Melville, Y.-H. Chu, C.-H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Appl. Phys. Lett. 95(6), 062909 (2009)

    Article  CAS  Google Scholar 

  11. 11.

    W. Ji, K. Yao, Y.C. Liang, Adv. Mater. 22(15), 1763 (2010)

    CAS  Article  Google Scholar 

  12. 12.

    N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.-W. Cheong, Nature 429(6990), 392 (2004)

    CAS  Article  Google Scholar 

  13. 13.

    F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Adv. Mater. 19(19), 2889 (2007)

    CAS  Article  Google Scholar 

  14. 14.

    H. Maleki, M. Kazemeini, A.S. Larimi, F. Khorasheh, J. Ind. Eng. Chem. 47, 399 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    H. Maleki, M. Kazemeini, J. Fuel Chem. Technol. 45(4), 442 (2017)

    CAS  Article  Google Scholar 

  16. 16.

    G.A. Smolenskiĭ, I.E. Chupis, Soviet Phys. Uspekhi 25(7), 475 (1982)

    Article  Google Scholar 

  17. 17.

    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C: Solid State Phys. 13(10), 1931 (1980)

    CAS  Article  Google Scholar 

  18. 18.

    H. Maleki, S. Zare, R. Fathi, J. Supercond. Novel Magn. 31(8), 2539 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    H. Maleki, M. Zakeri, R. Fathi, Appl. Phys. A 124(11), 728 (2018)

    Article  CAS  Google Scholar 

  20. 20.

    H. Singh, K.L. Yadav, J. Phys.: Condens. Matter 23(38), 385901 (2011)

    Google Scholar 

  21. 21.

    P. Sharma, V. Verma, J. Magn. Magn. Mater. 374, 18 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Ceram. Int. 42(11), 12838 (2016)

    CAS  Article  Google Scholar 

  23. 23.

    T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, M.A. Bake, L. Zheng, J. Wang, H. Qian, R. Wu, K. Ibrahim, J. Alloys Compd. 710, 843 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    K.T. Liu, J. Li, J.B. Xu, F.L. Xu, L. Wang, L. Bian, J. Mater. Sci.: Mater. Electron. 28(7), 5609 (2017)

    CAS  Google Scholar 

  25. 25.

    S.-Z. Lu, X. Qi, J. Alloys Compd. 708, 194 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    J.-P. Zhou, R.-L. Yang, R.-J. Xiao, X.-M. Chen, C.-Y. Deng, Mater. Res. Bull. 47(11), 3630 (2012)

    CAS  Article  Google Scholar 

  27. 27.

    V. Kumar, A. Gaur, R.K. Kotnala, Superlattices Microstruct. 69, 1 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    H. Maleki, S. Falahatnezhad, M. Taraz, J. Supercond. Novel Magn. 31(10), 3217–3222 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, J. Alloys Compd. 509(9), 3917 (2011)

    CAS  Article  Google Scholar 

  30. 30.

    I. Sharifi, H. Shokrollahi, J. Magn. Magn. Mater. 324(15), 2397 (2012)

    CAS  Article  Google Scholar 

  31. 31.

    W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G.M. Kalvius, A. Martin, M.K. Krause, I. Halevy, J. Gal, W. Schäfer, G. Will, M. Hillberg, R. Wäppling, Phys. Rev. B 53(14), 9143 (1996)

    CAS  Article  Google Scholar 

  32. 32.

    E. Ranjith Kumar, T. Arunkumar, T. Prakash, Superlattices Microstruct. 85, 530 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    S. Zawar, S. Atiq, S. Riaz, S. Naseem, Superlattices Microstruct. 93, 50 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    K. Kamazawa, Y. Tsunoda, K. Odaka, K. Kohn, J. Phys. Chem. Solids 60(8–9), 1261 (1999)

    CAS  Article  Google Scholar 

  35. 35.

    J. Li, M. Zou, W. Wen, Y. Zhao, Y. Lin, L. Chen, H. Lai, L. Guan, Z. Huang, J. Mater. Chem. A 2(26), 10257 (2014)

    CAS  Article  Google Scholar 

  36. 36.

    X. Li, C. Wang, H. Guo, P. Sun, F. Liu, X. Liang, G. Lu, ACS Appl. Mater. Interfaces. 7(32), 17811 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, Adv. Mater. 26(38), 6622 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    Y. Fu, X. Wang, Ind. Eng. Chem. Res. 50(12), 7210 (2011)

    CAS  Article  Google Scholar 

  39. 39.

    S. Falahatnezhad, H. Maleki, J. Mater. Sci.: Mater. Electron. 29(20), 17360 (2018)

    CAS  Google Scholar 

  40. 40.

    K. Thanigai Arul, E. Manikandan, P.P. Murmu, J. Kennedy, M. Henini, J. Alloys Compd. 720, 395 (2017)

    CAS  Article  Google Scholar 

  41. 41.

    K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Polym. Int. 65(12), 1482 (2016)

    Article  CAS  Google Scholar 

  42. 42.

    P. Kurinjinathan, K.T. Arul, Recent Patents Mater. Sci. 11(2), 91 (2019)

    Article  CAS  Google Scholar 

  43. 43.

    C.J. Brinker, G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Cambridge, 1990)

    Google Scholar 

  44. 44.

    A.J. Perrotta, Mater. Res. Innov. 2(1), 33 (1998)

    CAS  Article  Google Scholar 

  45. 45.

    O.V. Al’myasheva, E.N. Korytkova, A.V. Maslov, V.V. Gusarov, Inorg. Mater. 41(5), 460 (2005)

    Article  CAS  Google Scholar 

  46. 46.

    G. Williamson, W. Hall, Acta Metall. 1(1), 22 (1953)

    CAS  Article  Google Scholar 

  47. 47.

    X. Zhai, H. Deng, W. Zhou, P. Yang, J. Chu, J. Phys. D Appl. Phys. 48(38), 385002 (2015)

    Article  CAS  Google Scholar 

  48. 48.

    V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjeeviraja, J. Mater. Sci.: Mater. Electron. 21(4), 343 (2010)

    CAS  Google Scholar 

  49. 49.

    A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, J. Magn. Magn. Mater. 323(15), 2049 (2011)

    CAS  Article  Google Scholar 

  50. 50.

    P.S.V. Mocherla, S. Gautam, K.H. Chae, M.S.R. Rao, C. Sudakar, Mater. Res. Exp. 2(9), 095012 (2015)

    Article  CAS  Google Scholar 

  51. 51.

    K.V. Chandekar, K.M. Kant, Superlattices Microstruct. 111, 610 (2017)

    CAS  Article  Google Scholar 

  52. 52.

    A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, J. Alloys Compd. 509(6), 2909 (2011)

    CAS  Article  Google Scholar 

  53. 53.

    H. Ke, W. Wang, Y. Wang, J. Xu, D. Jia, Z. Lu, Y. Zhou, J. Alloys Compd. 509(5), 2192 (2011)

    CAS  Article  Google Scholar 

  54. 54.

    A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Phys. Solid State 45(1), 141 (2003)

    CAS  Article  Google Scholar 

  55. 55.

    G. Biasotto, A. Simões, C. Foschini, S. Antônio, M. Zaghete, J. Varela, Process. Appl. Ceram. 5(3), 171 (2011)

    CAS  Article  Google Scholar 

  56. 56.

    Y.-H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.-J. Han, Q. He, N. Balke, C.-H. Yang, D. Lee, W. Hu, Q. Zhan, P.-L. Yang, A. Fraile-Rodríguez, A. Scholl, S.X. Wang, R. Ramesh, Nat. Mater. 7(6), 478 (2008)

    CAS  Article  Google Scholar 

  57. 57.

    R. Ramesh, N.A. Spaldin, Nat. Mater. 6(1), 21 (2007)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamed Maleki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Falahatnezhad, S., Maleki, H., Badizi, A.M. et al. Influence of synthesis method on the structural, optical and magnetic properties of BiFeO3–ZnFe2O4 nanocomposites. J Mater Sci: Mater Electron 30, 15972–15979 (2019). https://doi.org/10.1007/s10854-019-01967-w

Download citation