Skip to main content

Advertisement

Log in

Simultaneously achieved high energy density and excellent thermal stability of lead-free barium titanate-based relaxor ferroelectric under low electric field

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dielectric capacitors with high power density and excellent temperature stability are highly demanded in pulsed power systems. BaTiO3-based lead-free relaxor ceramics have been proven to be a promising candidate for energy storage applications. However, the presence of low maximum polarization (Pmax) heavily restricts its applications in the energy storage field. In order to significantly increase Pmax under low electric field, a strategy, via introducing Bi0.5Na0.5TiO3 (BNT) and Ca2+, constructing local compositional disorder and decreasing grain size, is propounded in this work. High Pmax of 42.11 µC cm−2 and large breakdown electric field (Eb) of 210 kV cm−1 were attained in Bi0.5Na0.5TiO3-modified BT-based solution, giving rise to ultrahigh Wrec of 2.57 J/cm3. The significantly improved Wrec is much superior to the previous other lead-free dielectric ceramic under moderate electric fields (< 220 kV cm−1). In addition, an excellent temperature stability (the variation of Wrec is less than 3% in the temperature range of 20–120 °C) was obtained in this BNT-modified BT-based bulk materials. These results demonstrate that the strategy is practicable and effective to hike the energy density up for BaTiO3-based bulk ceramics, which may pave a significant step towards utilizing energy storage applications for BaTiO3-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Adv. Mater. 22, E28–E62 (2010)

    Article  Google Scholar 

  2. Z. Yang, F. Gao, H. Du, L. Jin, L. Yan, Q. Hu, Y. Yu, S. Qu, X. Wei, Z. Xu, Y.-J. Wang, Nano. Energy 58, 768–777 (2019)

    Article  Google Scholar 

  3. Z.B. Pan, L.M. Yao, J.W. Zhai, K. Yang, B. Shen, H.T. Wang, ACS. Sustain Chem. Eng. 5, 4707–4717 (2017)

    Article  Google Scholar 

  4. F. Li, T. Jiang, J.W. Zhai, B. Shen, H.R. Zeng, J. Mater. Chem. C. 6, 7976–7981 (2018)

    Article  Google Scholar 

  5. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Adv. Mater. 29, 1601727 (2017)

    Article  Google Scholar 

  6. B. Xie, H.B. Zhang, Q. Zhang, J.D. Zang, C. Yang, Q.P. Wang, M.Y. Li, S.L. Jiang, J. Mater. Chem. A. 5, 6070–6078 (2017)

    Article  Google Scholar 

  7. J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yan, Nano Energy 50, 723–732 (2018)

    Article  Google Scholar 

  8. B. Xu, J. Iniguez, L. Bellaiche, Nat. Commun. 8, 15682 (2017)

    Article  Google Scholar 

  9. D.W. Wang, Z.M. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q.L. Zhao, X.L. Tan, I.M. Reaney, J. Mater. Chem. A. 6, 4133–4144 (2018)

    Article  Google Scholar 

  10. B. Xie, Q. Zhang, L. Zhang, Y.W. Zhu, X. Guo, P.Y. Fan, H.B. Zhang, Nano. Energy. 54, 437–446 (2018)

    Article  Google Scholar 

  11. C.W. Tao, X.Y. Geng, J. Zhang, R.X. Wang, Z.B. Gu, S.T. Zhang, J. Eur. Ceram. Soc. 38, 4946–4952 (2018)

    Article  Google Scholar 

  12. A. Chauhan, S. Patel, R. Vaish, C.R. Bowen, Materials 8, 8009–8031 (2015)

    Article  Google Scholar 

  13. Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334–6365 (2013)

    Article  Google Scholar 

  14. C. Wang, F. Yan, H. Yang, Y. Lin, T. Wang, J. Alloys. Compd. 749, 605–611 (2018)

    Article  Google Scholar 

  15. F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Mater. Res. Lett. 7, 345–352 (2018)

    Article  Google Scholar 

  16. B. Hu, H. Fan, L. Ning, S. Gao, Z. Yao, Q. Li, Ceram. Int. 44, 10968–10974 (2018)

    Article  Google Scholar 

  17. X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995–4001 (2016)

    Article  Google Scholar 

  18. C.W. Cui, Y.P. Pu, Z.Y. Gao, J. Wan, Y.S. Guo, C.Y. Hui, Y.R. Wang, Y.F. Cui, J. Alloys. Compd. 711, 319–326 (2017)

    Article  Google Scholar 

  19. J. Yin, Y. Zhang, X. Lv, J. Wu, J. Mater. Chem. A 6, 9823–9832 (2018)

    Article  Google Scholar 

  20. X. Hao, Y. Wang, L. Zhang, L. Zhang, S. An, Appl. Phys. Lett. 102, 163903 (2013)

    Article  Google Scholar 

  21. M. Sharifzadeh Mirshekarloo, K. Yao, T. Sritharan, Appl. Phys. Lett. 97, 142902 (2010)

    Article  Google Scholar 

  22. J. Gao, Y. Zhang, L. Zhao, K.-Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.F. Li, J. Mater. Chem. A 7, 2225–2232 (2019)

    Article  Google Scholar 

  23. N. Luo, K. Han, F. Zhuo, L. Liu, X. Chen, B. Peng, X. Wang, Q. Feng, Y. Wei, J. Mater. Chem. C. 7, 4999–5008 (2019)

    Article  Google Scholar 

  24. Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, J. Mater. Chem. A. 5, 17525–17531 (2017)

    Article  Google Scholar 

  25. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.-G. Ye, H. Zhang, J. Mater. Chem. C. 7, 281–288 (2019)

    Article  Google Scholar 

  26. T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, J. Am. Ceram. Soc. 98, 559–566 (2015)

    Article  Google Scholar 

  27. M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C. 6, 8528–8537 (2018)

    Article  Google Scholar 

  28. W.-B. Li, D. Zhou, L.-X. Pang, R. Xu, H.-H. Guo, J. Mater. Chem. A. 5, 19607–19612 (2017)

    Article  Google Scholar 

  29. Z.T. Yang, H.L. Du, S.B. Qu, Y.D. Hou, H. Ma, J.F. Wang, J. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A. 4, 13778–13785 (2016)

    Article  Google Scholar 

  30. C. Neusel, G.A. Schneider, J. Mech. Phys. Solids 63, 201–213 (2014)

    Article  Google Scholar 

  31. T. Tunkasiri, G. Rujijanagul, J. Mater. Sci. Lett. 15, 1767–1769 (1996)

    Article  Google Scholar 

  32. Z.H. Chen, Z.W. Li, J.N. Ding, J.J. Xu, J.H. Qiu, Y. Yang, J. Alloys Compd. 704, 141–145 (2017)

    Article  Google Scholar 

  33. Z.H. Chen, Z.W. Li, M.G. Ma, J.H. Qiu, T.X. Zhao, J.N. Ding, X.G. Jia, K.Q. Zhu, Mater. Res. Bull. 105, 330–333 (2018)

    Article  Google Scholar 

  34. Z.H. Chen, Z.W. Li, J.N. Ding, T.X. Zhao, J.H. Qiu, K.Q. Zhu, J.J. Xu, B. Zhang, J. Electron. Mater. 47, 3409–3413 (2018)

    Article  Google Scholar 

  35. Z. Sun, L. Li, S. Yu, X. Kang, S. Chen, Dalton. T. 46, 14341–14347 (2017)

    Article  Google Scholar 

  36. Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, J. Mater. Chem. C. 5, 9552–9558 (2017)

    Article  Google Scholar 

  37. T.Q. Shao, H.L. Du, H. Ma, S.B. Qu, J. Wang, J.F. Wang, X.Y. Wei, Z. Xu, J. Mater. Chem. A. 5, 554–563 (2017)

    Article  Google Scholar 

  38. J. Sun, X.L. Chen, X. Li, X. Yan, X.X. Li, H.F. Zhou, X.B. Liu, H. Ruan, J. Mater. Sci. 20, 695–700 (2019)

    Google Scholar 

  39. G.S. Rohrer, Ionic radii for halides and chalcogenides, pp. 521–525 (2001)

  40. Y.P. Pu, M.T. Yao, H.R. Liu, T. Fromling, J. Eur. Ceram. Soc. 36, 2461–2468 (2016)

    Article  Google Scholar 

  41. S.N. Tripathy, K.K. Mishra, S. Sen, D.K. Pradhan, J. Am. Ceram. Soc. 97, 1846–1854 (2014)

    Article  Google Scholar 

  42. Q. Li, J. Wang, Y. Ma, L.T. Ma, G.Z. Dong, H.Q. Fan, J. Alloys. Compd. 663, 701–707 (2016)

    Article  Google Scholar 

  43. B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simoes, S. Panigrahi, E. Longo, N.C. Batista, Appl. Phys. A 109, 715–723 (2012)

    Article  Google Scholar 

  44. L. Zhang, Y. Pu, M. Chen, J. Alloys Compd. 775, 342–347 (2019)

    Article  Google Scholar 

  45. B.Y. Qu, H.L. Du, Z.T. Yang, Q.H. Liu, J. Am. Ceram. Soc. 100, 1517–1526 (2017)

    Article  Google Scholar 

  46. M.Y. Liu, H. Hao, Y.C. Zhen, T. Wang, D.D. Zhou, H.X. Liu, M.H. Cao, Z.H. Yao, J. Eur. Ceram. Soc. 35, 2303–2311 (2015)

    Article  Google Scholar 

  47. A. Zeb, S.J. Miline, J. Eur. Ceram. Soc. 34, 3159–3166 (2014)

    Article  Google Scholar 

  48. D.D. Ma, X.L. Chen, G.S. Huang, J. Chen, H.F. Zhou, F. Fang, Ceram. Int. 41, 7157–7161 (2015)

    Article  Google Scholar 

  49. H.B. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Y.L. Wang, L.N. Guo, W.D. Tai, H. Wei, J. Eur. Ceram. Soc. 37, 3303–3311 (2017)

    Article  Google Scholar 

  50. D.C. Luan, S.H. Ding, T. Chen, T.X. Song, Ferroelectrics 385, 6169–6176 (2009)

    Article  Google Scholar 

  51. H.L. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Z. Pei, J. Appl. Phys. 105, 124104 (2009)

    Article  Google Scholar 

  52. Q. Yuan, G. Li, F.Z. Yao, S.D. Cheng, Y. Wang, R. Ma, S.B. Mi, M. Gu, K. Wang, J.F. Li, H. Wang, Nano. Energy 52, 203–210 (2018)

    Article  Google Scholar 

  53. Q. Li, W. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H. Fan, J. Alloys. Compd. 775, 116–123 (2019)

    Article  Google Scholar 

  54. Q. Chai, D. Yang, X. Zhao, X. Chao, Z. Yang, J. Am. Ceram. Soc. 101, 2321–2329 (2018)

    Article  Google Scholar 

  55. B.Y. Qu, H.L. Du, Z.T. Yang, J. Mater. Chem. C. 4, 1795–1803 (2016)

    Article  Google Scholar 

  56. D. Zheng, R. Zuo, D. Zhang, Y. Li, X. Tan, J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    Article  Google Scholar 

  57. X.L. Gao, Y. Li, J.W. Chen, C. Yuan, M. Zeng, A.H. Zhang, X.S. Gao, X.B. Lu, Q.L. Li, J.M. Liu, J. Eur. Ceram. Soc. 39, 2331–2338 (2019)

    Article  Google Scholar 

  58. D.Z.R. Zuo, J. Eur. Ceram. Soc. 37, 413–418 (2017)

    Article  Google Scholar 

  59. H. Tao, J.G. Wu, J. Mater. Sci. 28, 16199–16204 (2017)

    Google Scholar 

  60. J. Yin, X. Lv, J.G. Wu, Ceram. Int. 43, 13541–13546 (2017)

    Article  Google Scholar 

  61. Z. Shen, X. Wang, B. Luo, L. Li, J. Mater. Chem. A 3, 18146–18153 (2015)

    Article  Google Scholar 

  62. Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, J. Alloys. Compd. 640, 416–420 (2015)

    Article  Google Scholar 

  63. F. Li, M. Zhou, J. Zhai, B. Shen, H. Zeng, J. Eur. Ceram. Soc. 38, 4646–4652 (2018)

    Article  Google Scholar 

  64. M. Wei, J. Zhang, K. Wu, H. Chen, C. Yang, Ceram. Int. 43, 9593–9599 (2017)

    Article  Google Scholar 

  65. X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, Ceram. Int. 43, 9060–9066 (2017)

    Article  Google Scholar 

  66. M. Zhou, R. Liang, Z. Zhou, X. Dong, Ceram. Int. 45, 3582–3590 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (Nos. 11664008, 61761015), Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027 and 2017GXNSFFA198011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, X., Zhou, H. et al. Simultaneously achieved high energy density and excellent thermal stability of lead-free barium titanate-based relaxor ferroelectric under low electric field. J Mater Sci: Mater Electron 30, 15912–15922 (2019). https://doi.org/10.1007/s10854-019-01941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01941-6

Navigation