Void fraction of a Sn–Ag–Cu solder joint underneath a chip resistor and its effect on joint strength and thermomechanical reliability


The void fraction in the solder joint of a chip resistor and its effect on the solder joint strength and reliability were investigated. The solder joint of a chip resistor has two regions: solder beneath the component and solder fillet. Although the total void fraction was similar irrespective of the component size, the void fraction of solder beneath the component increased and that of solder fillet decreased as the component size increased. The void fraction decreased considerably under vacuum reflow compared with that under air reflow. Furthermore, the vacuum reflowed samples showed similar void fraction characteristics as the air reflowed samples: the void fraction in the solder beneath the chip resistor increased and that in the solder fillet decreased as the chip resistor size increased. For both air and vacuum reflow, the shear strength of the chip resistor solder joint decreased as the chip size increased. The reliability of the chip resistor joint was evaluated using a thermal shock test. As the number of thermal shock cycles increased, the shear strength of the chip resistor solder joint decreased. Up to 2000 cycles, the shear strength reduction rates were similar irrespective of the component size. However, after 3000 cycles, the shear strength reduction rate of the large components (0805, 1210) was to about 50%, which was twice that of the small components (0402, 0603). Cross-sectional SEM after the thermal shock test revealed that a generated crack merged with a void, forming a long crack and lowering the joint reliability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    L.J. Ladani, A. Dasgupta, J. Electron. Packag. 129(3), 273–277 (2007)

    Article  Google Scholar 

  2. 2.

    A. DerMarderosian, V. Gionet, Reliability Physics Symposium, 21st Annual, IEEE, pp. 235–241 (1983)

  3. 3.

    N. Lee, W. O’Hara, in Proc. Surf. Mount Int. pp. 462–471 (1995)

  4. 4.

    R.K. Wassink, Solder in Electronics (Electrochemical Publications, New York, 1989)

    Google Scholar 

  5. 5.

    M. Yunus, K. Srihari, J. Pitarresi, A. Primavera, Microelectron. Reliab. 43(12), 2077–2086 (2003)

    Article  Google Scholar 

  6. 6.

    S. Sethuraman, R. Coyle, R. Popowich, P. Read, in SMTAI Conf. Proc. (2007)

  7. 7.

    R. Coyle, H. McCormick, P. Read, R. Popowich, J. Osenbach, in SMTAI Conf. Proc. p. 14 (2010)

  8. 8.

    Q. Yu, T. Shibutani, D.-S. Kim, Y. Kobayashi, J. Yang, M. Shiratori, Microelectron. Reliab. 48(3), 431–437 (2008)

    Article  Google Scholar 

  9. 9.

    T.-C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, in Electronic Components and Technology Conference, 2004, Proc. 54th, IEEE, pp. 1256–1262 (2004)

  10. 10.

    IPC-610D standard, Acceptability of Electronic Assemblies, Association Connecting Electroncs Industries (2014). http://www.ipc.org/

  11. 11.

    D. Hillman, D. Adams, T. Pearson, B. Williams, B. Petrick, R. Wilcoxon, R. Collins, D. Bernard, J. Travis, E. Krastev, Proc. SMTAI 2011, 163–177 (2011)

    Google Scholar 

  12. 12.

    P. Wild, D. Lorenz, T. Grözinger, A. Zimmermann, Microelectron. Reliab. 85, 163–175 (2018)

    Article  Google Scholar 

  13. 13.

    M.-S. Kang, Y.-J. Jeon, D.-S. Kim, Y.-E. Shin, Int. J. Precis. Eng. Manuf. 17(4), 445–452 (2016)

    Article  Google Scholar 

  14. 14.

    Y.-J. Jeon, S.-I. Son, D.-S. Kim, Y.-E. Shin, J. Korean Inst. Electr. Electron. Mater. Eng. 23(8), 611–616 (2010)

    Google Scholar 

  15. 15.

    A. Youssef, I. Birner, H. Voelkel, J. Thierauf, R. Vodiunig, A. Middendorf, K.-D. Lang, in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2016 17th International Conference on, IEEE, pp. 1–6 (2016)

  16. 16.

    P. Tu, Y.C. Chan, J. Lai, IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20(1), 87–93 (1997)

    Article  Google Scholar 

  17. 17.

    D.R. Banks, T.E. Burnette, Y. Cho, W.T. DeMarco, A.J. Mawer, in Proc. Surface Mount International, Surface Mount International San Jose, California, pp. 121–126 (1996)

  18. 18.

    D. Kim, K. Hubbard, B. Nandagopal, M. Hu, S. Teng, A. Nouri, in IPC APEX Conf. Proc., pp. S31–03 (2006)

  19. 19.

    J. Smetana, T. Sack, D. Love, C. Katzko, in IPC APEX Conf. Proc., pp. S28–02 (2011)

  20. 20.

    Y. Liu, J. Keck, E. Page, N.-C. Lee, in IPC APEX EXPO Conf. Proc., p. 19 (2014)

  21. 21.

    M. Rauer, A. Volkert, T. Scherck, S. Harter, M. Kaloudis, J. Fail, Anal. Prev. 14, 272–281 (2014)

    Article  Google Scholar 

  22. 22.

    P. Wild, T. Grozinger, D. Lorenz, A. Zimmermann, IEEE Trans. Reliab. 66(4), 1229–1237 (2017)

    Article  Google Scholar 

  23. 23.

    JIS Z 3198-7 Standard, Test Methods for Lead-Free Solders-Part 7: Methods for Shear Strength of Solder Joints on Chip Components, Japanese Standards Association (2009). https://www.jsa.or.jp/en/

  24. 24.

    K. Sweatman, T. Nishimura, K. Sugimoto, A. Kita, Controlling Voiding Mechanisms in the Reflow Soldering Process, in Proc. IPC APEX Expo (2016)

  25. 25.

    Z. Wang, H. Zhao, W. Lou, H. Li, L. Jin, in IEEE 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), pp. 1–4 (2011)

Download references


This work was financially supported through a grant from Korea Institute of Industrial Technology, Republic of Korea.

Author information



Corresponding author

Correspondence to Young-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seo, W., Ko, YH., Kim, YH. et al. Void fraction of a Sn–Ag–Cu solder joint underneath a chip resistor and its effect on joint strength and thermomechanical reliability. J Mater Sci: Mater Electron 30, 15889–15896 (2019). https://doi.org/10.1007/s10854-019-01935-4

Download citation