Luminescence enhancement for Y2Mo4O15:Pr3+ red-emitting phosphors by Tb3+ co-doping


A series of Y2Mo4O15:Pr3+, Tb3+ red-emitting phosphors is synthesized via a solid-state reaction. The X-ray diffraction results indicate that the patterns of Y2Mo4O15:Pr3+, Tb3+ samples match well with the standard Y2Mo4O15 monoclinic structure. Under blue excitation at 453 nm, the Y2Mo4O15:Pr3+ phosphors show a red emission peaked at 614 nm, corresponding to the characteristic 1D2 → 3H4 electronic transition of Pr3+. Under near-ultraviolet excitation at 375 nm, the Y2Mo4O15:Tb3+ phosphor results in a double emission at 552 nm and 490 nm, which corresponding to the 5D4 → 7F5 and 5D4 → 7F6 electronic transitions of Tb3+. Furthermore, the luminescence properties of Y2Mo4O15:Pr3+ phosphor, especially luminescence intensity, was observably improved by the Tb3+ co-doping, which due to the emission peak of Tb3+ matches well with the excitation peak of Pr3+ at 490 nm and the resulted energy transfer between Tb3+ and Pr3+. The chromaticity coordinates of Y2Mo4O15:Pr3+, Tb3+ phosphors are all located in the red region. The results indicate that the prepared Y2Mo4O15:Pr3+, Tb3+ red phosphors are suitable for the applications of blue-excited warm white light-emitting diodes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    P. Chen, D. Yang, W. Hu, J. Zhang, Y. Wu, Photoluminescence properties and structure of double perovskite Ba2ZnWO6:Eu3+, Li+ as a novel red emitting phosphor. Chem. Phys. Lett. 689, 169–173 (2017)

    Article  Google Scholar 

  2. 2.

    K.V. Dabre, K. Park, S.J. Dhoble, Synthesis and photoluminescence properties of microcrystalline Sr2ZnWO6:RE3+ (RE = Eu, Dy, Sm and Pr) phosphors. J. Alloys Compd. 617, 129–134 (2014)

    Article  Google Scholar 

  3. 3.

    A. Balakrishna, O.M. Ntwaeaborwa, Study of luminescent behavior and crystal defects of different MNa[PO4]-Dy3+ phosphors (M = Mg, Ca, Sr and Ba). Sens. Actuators B 242, 305–317 (2017)

    Article  Google Scholar 

  4. 4.

    K. Li, C. Shen, White LED based on nano-YAG:Ce3+/YAG:Ce3+, Gd3+ hybrid phosphors. Optik 123, 621–623 (2012)

    Article  Google Scholar 

  5. 5.

    H.J. Yu, K. Park, W. Chung, J. Kim, S.H. Kim, White light emission from blue InGaN LED precoated with conjugated copolymer/quantum dots as hybrid phosphor. Synth. Met. 159, 2474–2477 (2009)

    Article  Google Scholar 

  6. 6.

    W. Zhang, Y. Wang, Y. Gao, J. Long, J. Li, Sol-gel assisted synthesis and photoluminescence property of Sr2Si5N8:Eu2+, Dy3+ red phosphor for white light emitting diodes. J. Alloy. Compd. 667, 341–345 (2016)

    Article  Google Scholar 

  7. 7.

    L.-J. Yin, C. Cai, H. Wang, Y.-J. Zhao, H.V. Bui, X. Jian, H. Tang, X. Wang, L.-J. Deng, X. Xu, M.-H. Lee, Luminescent properties and microstructure of SiC doped AlON:Eu2+ phosphors. J. Alloys Compd. 725, 217–226 (2017)

    Article  Google Scholar 

  8. 8.

    M. Wang, S.-H. Zhang, Q.-Q. Zhu, Z.-W. Zhang, L. Zhang, X. Wang, L.-B. Zhang, Y.-J. Zhao, X. Xu, L.-J. Yin, Eu sites in Eu-doped AlON phosphors: anomalous Eu occupancy layers. J. Phys. Chem. C 123, 3110–3114 (2019)

    Article  Google Scholar 

  9. 9.

    C. Hecht, F. Stadler, P.J. Schmidt, J.S. auf der Guenne, V. Baumann, W. Schnick, SrAlSi4N7:Eu2+-a nitridoalumosilicate phosphor for warm white light (pc)LEDs with edge-sharing tetrahedra. Chem. Mater. 21, 1595–1601 (2009)

    Article  Google Scholar 

  10. 10.

    A. Garcia-Murillo, F.D. Carrillo-Romo, J. Oliva-Uc, T.A. Esquivel-Castro, S.D. de La Torre, Effects of Eu content on the luminescent properties of Y2O3:Eu3+ aerogels and Y(OH)3/Y2O3:Eu3+@SiO2 glassy aerogels. Ceram. Int. 43, 12196–12204 (2017)

    Article  Google Scholar 

  11. 11.

    Y. Kojima, A. Takahashi, T. Umegaki, Synthesis of orange-red-emitting Eu2+, Pr3+ codoped SrS long afterglow phosphor. J. Lumin. 146, 42–45 (2014)

    Article  Google Scholar 

  12. 12.

    K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes. Electrochem. Solid State Lett. 9, H22–H25 (2006)

    Article  Google Scholar 

  13. 13.

    X. He, M. Guan, N. Lian, J. Sun, T. Shang, Synthesis and luminescence characteristics of K2Bi(PO4)(MO4):Eu3+ (M = Mo, W) red-emitting phosphor for white LEDs. J. Alloy. Compd. 492, 452–455 (2010)

    Article  Google Scholar 

  14. 14.

    F. Mo, L. Zhou, Q. Pang, F. Gong, Z. Liang, Potential red-emitting NaGd(MO4)2: R (M = W, Mo, R = Eu3+, Sm3+, Bi3+) phosphors for white light emitting diodes applications. Ceram. Int. 38, 6289–6294 (2012)

    Article  Google Scholar 

  15. 15.

    G. Benoît, J. Véronique, A. Arnaud, G. Alain, Luminescence properties of tungstates and molybdates phosphors: illustration on ALn(MO4)2 compounds (A = alikaline cation, Ln = lanthanides, M = W, Mo). Solid State Sci. 13, 460–467 (2011)

    Article  Google Scholar 

  16. 16.

    A. Pandey, V. Kumar Rai, V. Kumar, V. Kumar, H.C. Swart, Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: an optical heating phosphor. Sens. Actuat. B 209, 352–358 (2015)

    Article  Google Scholar 

  17. 17.

    P.V. Tumrama, P.R. Kautkara, S.P. Wankhedeb, S.V. Moharil, NIR emitting Bi2MoO6:Nd3+/Yb3+ phosphor as a spectral converter for solar cells. J. Lumin. 206, 39–45 (2019)

    Article  Google Scholar 

  18. 18.

    K. Li, R.V. Deun, Photoluminescence and energy transfer properties of a novel molybdate KBaY(MoO4)3:Ln3+ (Ln3+ = Tb3+, Eu3+, Sm3+, Tb3+/Eu3+, Tb3+/Sm3+) as a multi-color emitting phosphor for UV w-LEDs. Dalton Trans. 47, 6995–7004 (2018)

    Article  Google Scholar 

  19. 19.

    A.I. Becerro, M. Allix, M. Laguna, D. González-Mancebo, C. Genevois, A. Caballero, G. Lozano, N.O. Núñez, M. Ocaña, Revealing the substitution mechanism in Eu3+:CaMoO4 and Eu3+, Na+:CaMoO4 phosphors. J. Mater. Chem. C 6, 12830–12840 (2018)

    Article  Google Scholar 

  20. 20.

    J. Liu, H. Lian, C. Shi, Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+. Opt. Mater. 29, 1591–1594 (2007)

    Article  Google Scholar 

  21. 21.

    G. Li, L. Li, M. Li, W. Bao, Y. Song, S. Gan, H. Zou, X. Xu, Hydrothermal synthesis and luminescent properties of NaLa(MoO4)2:Eu3 + , Tb3 + phosphors. J. Alloy. Compd. 550, 1–8 (2013)

    Article  Google Scholar 

  22. 22.

    Y. Tian, X. Qi, X. Wu, R. Hua, B. Chen, Luminescent properties of Y2(MoO4)3:Eu3+ red phosphors with flowerlike shape prepared via coprecipitation method. J. Phys. Chem. C 113, 10767–10772 (2009)

    Article  Google Scholar 

  23. 23.

    A. Balakrishna, V. Kumar, A. Kumar, O.M. Ntwaeaborwa, Structural and photoluminescence features of Pr3+-activated different alkaline sodium-phosphate-phosphors. J. Alloys Compd. 686, 533–539 (2016)

    Article  Google Scholar 

  24. 24.

    S.N. Ogugua, H.C. Swart, O.M. Ntwaeaborwa, The dynamics of the photoluminescence of Pr3+ in mixed lanthanum yttrium oxyorthosilicate hosts. Sens. Actuat. B 250, 285–299 (2017)

    Article  Google Scholar 

  25. 25.

    J. Zhang, L. Wang, Y. Jin, X. Zhang, Z. Hao, X. Wang, Energy transfer in Y3Al5O12:Ce3+, Pr3+ and CaMoO4:Sm3+, Eu3+ phosphors. J. Lumin. 131, 429–432 (2011)

    Article  Google Scholar 

  26. 26.

    X. He, M. Guan, Z. Li, T. Shang, N. Lian, Q. Zhou, Enhancement of fluorescence from BaMoO4:Pr3+ deep-red-emitting phosphor via codoping Li+ and Na+ ions. J. Am. Ceram. Soc. 94, 2483–2488 (2011)

    Article  Google Scholar 

  27. 27.

    H. Deng, Z. Zhao, J. Wang, Z. Hei, M. Li, H.M. Noh, J.H. Jeong, R. Yu, Photoluminescence properties of a new orange–red emitting Sm3+-doped Y2Mo4O15 phosphor. J. Solid State Chem. 228, 110–116 (2015)

    Article  Google Scholar 

  28. 28.

    M. Janulevicius, P. Marmokas, M. Misevicius, J. Grigorjevaite, L. Mikoliunaite, S. Sakirzanovas, A. Katelnikovas, Luminescence and luminescence quenching of highly efficient Y2Mo4O15:Eu3+ phosphors and ceramics. Sci. Rep. 6, 26098 (2016)

    Article  Google Scholar 

  29. 29.

    Y. Wang, X. Liu, L. Jing, P. Niu, Tunable white light and energy transfer of Dy3+ and Eu3+ doped Y2Mo4O15 phosphors. Ceram. Int. 42, 13004–13010 (2016)

    Article  Google Scholar 

  30. 30.

    B. Li, X. Huang, H. Guo, Y. Zeng, Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigments 150, 67–72 (2018)

    Article  Google Scholar 

  31. 31.

    K. Thomas, D. Alexander, S. Sisira, S. Gopi, P.R. Biju, N.V. Unnikrishnan, C. Joseph, Energy transfer driven tunable emission of Tb/Eu co-doped lanthanum molybdate nanophosphors. Opt. Mater. 80, 37–46 (2018)

    Article  Google Scholar 

  32. 32.

    H. Xiong, Y. Zhang, Y. Liu, T. Gao, L. Zhang, Z.-A. Qiao, L. Zhang, S. Gan, Q. Huo, Self-template construction of honeycomb-like mesoporous YPO4:Ln3+ (Ln = Eu, Tb) phosphors with tuneable luminescent properties. J. Alloys Compd. 782, 845–851 (2019)

    Article  Google Scholar 

  33. 33.

    I. Mackeviciute, A. Linkeviciute, A. Katelnikovas, Synthesis and optical properties of Y2Mo4O15 doped by Pr3+. J. Lumin. 190, 525–530 (2017)

    Article  Google Scholar 

  34. 34.

    H. Naruke, T. Yamase, Structural investigation of R2Mo4O15 (R = La, Nd, Sm), and polymorphs of the R2Mo4O15 (R = rare earth) family. J. Solid State Chem. 173, 407–417 (2003)

    Article  Google Scholar 

  35. 35.

    L. Cheng, W. Zhang, Y. Li, S. Dai, X. Chen, K. Qiu, Synthesis and photoluminescence properties of Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) red phosphors for white light-emitting diodes. Ceram. Int. 43, 11244–11249 (2017)

    Article  Google Scholar 

  36. 36.

    Y. Shen, K. Qiu, J. Wang, W. Zhang, Q. Tang, Synthesis of Dy3+ co-doped Bi4Si3O12:Sm3+ phosphors with enhanced red-emitting properties. Ceram. Int. 43, 15946–15951 (2017)

    Article  Google Scholar 

  37. 37.

    Y. Shen, K. Qiu, W. Zhang, Y. Zeng, Red-emitting enhancement of Bi4Si3O12:Sm3+ phosphor by Pr3+ co-doping for white LEDs application. Ceram. Int. 43, 9158–9163 (2017)

    Article  Google Scholar 

  38. 38.

    G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444–445 (1968)

    Article  Google Scholar 

  39. 39.

    D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954)

    Article  Google Scholar 

  40. 40.

    D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  Google Scholar 

  41. 41.

    M. Yu, J. Lin, J. Fu, H.J. Zhang, Y.C. Han, Sol–gel synthesis and photoluminescent properties of LaPO4: a (A = Eu3+, Ce3+, Tb3+) nanocrystalline thin films. J. Mater. Chem. 13, 1413–1419 (2003)

    Article  Google Scholar 

  42. 42.

    S. Li, Q. Meng, S. Lü, W. Sun, Optical properties of Sm3+ and Tb3+ co-doped CaMoO4 phosphor for temperature sensing. Spectrochim. Acta A 214, 537–543 (2019)

    Article  Google Scholar 

Download references


This work was financially supported by the National Natural Science Foundation of China (Grant No. 51602032, 41673109), the Research Project of Science & Technology Department of Sichuan Province (No. 2017SZ0185) and the Project of Chengdu University of Technology Innovation Team (Grant No. 10912-KYTD201506).

Author information



Corresponding authors

Correspondence to Wentao Zhang or Yi Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, G., Zhang, W., Huang, Y. et al. Luminescence enhancement for Y2Mo4O15:Pr3+ red-emitting phosphors by Tb3+ co-doping. J Mater Sci: Mater Electron 30, 14589–14599 (2019).

Download citation