Dielectric characterization of BSA doped-PANI interlayered metal–semiconductor structures


The measured capacitance and conductance–voltage (C&G/ω–V) data between 1 and 200 kHz of Al/(BSA-doped-PANI)/p-InP structure were examined to uncover real and imaginary components of complex permittivity (ε* = ε′ − jε″), loss tangent (tanδ), complex electric modulus (M* = M′ + jM″), and electrical conductivity (σ). It was uncovered that dielectric constant (ε′), dielectric loss (ε″), tanδ, real and imaginary components (M′ and M″) show a big dispersive behavior at low frequencies due to the oriental and the interfacial polarizations, as well as the surface states (Nss) and the BSA doped-PANI interlayer. Such behavior in ε′, ε″, and tanδ, behavior with frequency was also explained by Maxwell–Wagner relaxation. The values of σ are almost constant at lower-intermediate frequencies, but they start increase at high frequencies which are corresponding to the dc and ac conductivity, respectively. The values of M′ and M″ are lower in the low frequency zone and they become increase with increasing frequency at accumulation region due to the short-range charge carriers mobility. Ultimately, dielectric parameters and electric modulus alteration with frequency is the consequence of surface states and relaxation phenomena.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. 1.

    S.O. Tan, Comparison of graphene and zinc dopant materials for organic polymer interfacial layer between metal semiconductor structure. IEEE Trans. Electron Devices 64(12), 5121–5127 (2017)

    Article  Google Scholar 

  2. 2.

    Ş. Altındal, H. Uslu, The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures. J. Appl. Phys. 109(7), 074503 (2011)

    Article  Google Scholar 

  3. 3.

    S.A. Yerişkin, M. Balbaşı, I. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J. Mater. Sci. 28(18), 14040–14048 (2017)

    Google Scholar 

  4. 4.

    H. Tecimer, S.O. Tan, Ş. Altındal, Frequency-dependent admittance analysis of the metal-semiconductor structure with an interlayer of Zn-doped organic polymer nanocomposites. IEEE Trans. Electron Devices 65(1), 231–236 (2017)

    Article  Google Scholar 

  5. 5.

    H. Tecimer, On the frequency–voltage dependent electrical and dielectric profiles of the Al/(Zn-PVA)/p-Si structures. J. Mater. Sci. 29(23), 20141–20145 (2018)

    Google Scholar 

  6. 6.

    G.E. Demir, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, Temperature and interfacial layer effects on the electrical and dielectric properties of Al/(CdS-PVA)/p-Si (MPS) structures. J. Electron. Mater. 47(11), 6600–6606 (2018)

    Article  Google Scholar 

  7. 7.

    H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D 4(10), 1589 (1971)

    Article  Google Scholar 

  8. 8.

    C.C. Lin, Y.H. Wu, T.H. Hung, Y.T. Chang, Impact of interfacial layer position on resistive switching behaviors for ZrTiO x-based metal–insulator–metal devices. IEEE Trans. Nanotechnol. 13(4), 634–638 (2014)

    Article  Google Scholar 

  9. 9.

    S.O. Tan, H. Tecimer, O. Çiçek, Comparative investigation on the effects of organic and inorganic interlayers in Au/n-GaAs Schottky diodes. IEEE Trans. Electron Devices 64(3), 984–990 (2017)

    Article  Google Scholar 

  10. 10.

    N.G. McCrum, B.E. Read, G. Williams, Anelastic and dielectric effects in polymeric solids (Wiley, New York, 1967)

    Google Scholar 

  11. 11.

    E. Mar et al., Evaluation of electric and dielectric properties of metal–semiconductor structures with 2% GC-doped-(Ca3Co4Ga0.001Ox) interlayer. IEEE Trans. Electron Devices 65(9), 3901–3908 (2018)

    Article  Google Scholar 

  12. 12.

    M.M. Hoque et al., The impedance spectroscopic study and dielectric relaxation in A (Ni1/3Ta2/3) O3 [A = Ba, Ca and Sr]. Phys. B 407(18), 3740–3748 (2012)

    Article  Google Scholar 

  13. 13.

    S. Yasufuku et al., Maxwell-wagner dielectric polarization in polypropylene film/aromatic dielectric fluid system for high voltage capacitor use. IEEE Trans. Electr. Insul. 6, 334–342 (1979)

    Article  Google Scholar 

  14. 14.

    J. Chen et al., Current–voltage–temperature and capacitance–voltage–temperature characteristics of TiW alloy/p-InP Schottky barrier diode. J. Alloys Compd. 649, 1220–1225 (2015)

    Article  Google Scholar 

  15. 15.

    B. Akkal et al., Illumination dependence of I-V and C–V characterization of Au/InSb/InP (1 0 0) Schottky structure. Appl. Surf. Sci. 253(3), 1065–1070 (2006)

    Article  Google Scholar 

  16. 16.

    V. Janardhanam et al., Temperature dependency and carrier transport mechanisms of Ti/p-type InP Schottky rectifiers. J. Alloys Compd. 504(1), 146–150 (2010)

    Article  Google Scholar 

  17. 17.

    P.S. Reddy, V. Janardhanam, I. Jyothi, S.H. Yuk, V.R. Reddy, J.C. Jeong, S.N. Lee, C.J. Choi, Modification of Schottky barrier properties of Ti/p-type InP Schottky diode by polyaniline (PANI) organic interlayer. J. Semicond. Technol. Sci. 16(5), 664–674 (2016)

    Article  Google Scholar 

  18. 18.

    O. Çiçek, S.O. Tan, H. Tecimer, Ş. Altındal, Role of graphene-doped organic/polymer nanocomposites on the electronic properties of Schottky junction structures for photocell applications. J. Electron. Mater. 47(12), 7134–7142 (2018)

    Article  Google Scholar 

  19. 19.

    H.U. Tecimer, M.A. Alper, H. Tecimer, S.O. Tan, Ş. Altındal, Integration of Zn-doped organic polymer nanocomposites between metal semiconductor structure to reveal the electrical qualifications of the diodes. Polym. Bull. 75(9), 4257–4271 (2018)

    Article  Google Scholar 

  20. 20.

    Y.S. Altındal, M. Balbaşı, A. Tataroğlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.43827

    Google Scholar 

  21. 21.

    J. Jang, J. Ha, J. Cho, Fabrication of water-dispersible polyaniline-poly (4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 19(13), 1772–1775 (2007)

    Article  Google Scholar 

  22. 22.

    S. Ashokan, V. Ponnuswamy, P. Jayamurugan, Comparative study of pure polyaniline with various oxidants by a template free method. Mater. Sci. Semicond. Process. 30, 494–501 (2015)

    Article  Google Scholar 

  23. 23.

    J. Stejskal et al., The effect of polymerization temperature on molecular weight, crystallinity, and electrical conductivity of polyaniline. Synth. Met. 96(1), 55–61 (1998)

    Article  Google Scholar 

  24. 24.

    P.J. Saikia, P.C. Sarmah, Investigation of polyaniline thin film and schottky junction with aluminium for electrical and optical characterization. Mater. Sci. Appl. 2(08), 1022 (2011)

    Google Scholar 

  25. 25.

    S. Ashokan et al., Influence of the counter ion on the properties of organic and inorganic acid doped polyaniline and their Schottky diodes. Superlattices Microstruct. 85, 282–293 (2015)

    Article  Google Scholar 

  26. 26.

    Z. Zhang, Z. Wei, M. Wan, Nanostructures of polyaniline doped with inorganic acids. Macromolecules 35(15), 5937–5942 (2002)

    Article  Google Scholar 

  27. 27.

    G. Ćirić-Marjanović, Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 177, 1–47 (2013)

    Article  Google Scholar 

  28. 28.

    J. Stejskal et al., Polyaniline prepared in the presence of various acids: a conductivity study. Polym. Int. 53(3), 294–300 (2004)

    Article  Google Scholar 

  29. 29.

    S.H. Kim, J.H. Seong, K.W. Oh, Effect of dopant mixture on the conductivity and thermal stability of polyaniline/Nomex conductive fabric. J. Appl. Polym. Sci. 83(10), 2245–2254 (2002)

    Article  Google Scholar 

  30. 30.

    B. Belaabed, S. Lamouri, J.L. Wojkiewicz, Curing kinetics, thermomechanical and microwave behaviors of PANI-doped BSA/epoxy resin composites. Polym. J. 43(8), 683 (2011)

    Article  Google Scholar 

  31. 31.

    W.H. Jang et al., Synthesis and electrorheology of camphorsulfonic acid doped polyaniline suspensions. Colloid Polym. Sci. 279(8), 823–827 (2001)

    Article  Google Scholar 

  32. 32.

    W. Yin, E. Ruckenstein, Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth. Met. 108(1), 39–46 (2000)

    Article  Google Scholar 

  33. 33.

    A. Kaya et al., The investigation of dielectric properties and ac conductivity of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors using impedance spectroscopy method. Ceram. Int. 42(2), 3322–3329 (2016)

    Article  Google Scholar 

  34. 34.

    E.H. Nicollian, J.R. Brews, E.H. Nicollian, MOS (metal oxide semiconductor) physics and technology, vol. 1987 (Wiley, New York et al., 1982)

    Google Scholar 

  35. 35.

    S.K. Tripathi, M. Sharma, Analysis of the forward and reverse bias IV and CV characteristics on Al/PVA: n-PbSe polymer nanocomposites Schottky diode. J. Appl. Phys. 111(7), 074513 (2012)

    Article  Google Scholar 

  36. 36.

    J. Ho, T.R. Jow, S. Boggs, Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 26(1), 20–25 (2010)

    Article  Google Scholar 

  37. 37.

    J.-H. Lin, J.-J. Zeng, Y.-J. Lin, Electronic transport for graphene/n-type Si Schottky diodes with and without H2O2 treatment. Thin Solid Films 550, 582–586 (2014)

    Article  Google Scholar 

  38. 38.

    A. Chełkowski, Dielectric physics, vol. 9 (Elsevier, Amsterdam, 1980)

    Google Scholar 

  39. 39.

    A. Dutta, C. Bharti, T.P. Sinha, AC conductivity and dielectric relaxation in CaMg1/3Nb2/3O3. Mater. Res. Bull. 43(5), 1246–1254 (2008)

    Article  Google Scholar 

  40. 40.

    M.M. Hoque et al., Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3)O3 and Ba(Zn1/3Ta2/3)O3. J. Mater. Sci. Technol. 30(4), 311–320 (2014)

    Article  Google Scholar 

  41. 41.

    S. Alptekin, A. Tataroğlu, Ş. Altındal, Dielectric, modulus and conductivity studies of Au/PVP/n-Si (MPS) structure in the wide range of frequency and voltage at room temperature. J. Mater. Sci. 30, 6853–6859 (2019)

    Google Scholar 

  42. 42.

    S. Demirezen, E.E. Tanrıkulu, Ş. Altındal, The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors. Indian J. Phys. 93, 739–747 (2019)

    Article  Google Scholar 

  43. 43.

    S.O. Tan et al., Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities. J. Mater. Sci. 27(8), 8340–8347 (2016)

    Google Scholar 

  44. 44.

    M. Gökçen et al., UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly (propylene glycol)-b-polystyrene block copolymer. Compos. B Eng. 57, 8–12 (2014)

    Article  Google Scholar 

  45. 45.

    A. Lösche, N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials clarendon-press, Oxford 1971 437 Seiten.£ 7, 50. Kristall Tech. 7(4), K55–K56 (1972)

    Article  Google Scholar 

  46. 46.

    S. Amrin, V.D. Deshpande, Dielectric relaxation and ac conductivity behavior of carboxyl functionalized multiwalled carbon nanotubes/poly (vinyl alcohol) composites. Physica E 87, 317–326 (2017)

    Article  Google Scholar 

  47. 47.

    X. Wu, E.S. Yang, H.L. Evans, Negative capacitance at metal-semiconductor interfaces. J. Appl. Phys. 68(6), 2845–2848 (1990)

    Article  Google Scholar 

  48. 48.

    H.N. Chandrakala, B. Ramaraj, G.M. Madhu, The influence of zinc oxide–cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films. J. Mater. Sci. 47(23), 8076–8084 (2012)

    Article  Google Scholar 

Download references


This work was supported by the Karabük University Scientific Research Project Unit under Contract No: KBÜ BAP-17-DS-409. The authors would like to thank to the Karabük University Scientific Research Project Unit for their financial support.

Author information



Corresponding author

Correspondence to Nursel Karaoğlan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karaoğlan, N., Tecimer, H.U., Altındal, Ş. et al. Dielectric characterization of BSA doped-PANI interlayered metal–semiconductor structures. J Mater Sci: Mater Electron 30, 14224–14232 (2019). https://doi.org/10.1007/s10854-019-01791-2

Download citation