Microwave hydrothermal synthesis, annealing and luminescence properties of BaWO4:3%Eu3+ microcrystals


The uniform BaWO4 microcrystals with scheelite-type tetragonal structure were fabricated via a microwave hydrothermal method. The morphologies and sizes of the products can be tuned by adjusting synthetic conditions including pH value, the amount of cetyltrimethylammonium bromide (CTAB) and the reaction time. The increasing amount of CTAB surfactant (from 0 to 0.05 mmol) causes the morphological transformation from flower-like to octahedron-like. Particularly, in the time-dependent experiments, the nanoparticles prefer to adsorb or nucleate on (111) crystal planes in the growth process, while the (101) planes become narrow or even partly disappear. Doping of Eu3+ (3 mol%) has no effect on the morphology and the phase structure. The emission spectrum (λex = 394 nm) of the BaWO4:3%Eu3+ exhibits the maximum peak at 613 nm, corresponding to 5D0 → 7F2 transition of Eu3+. Moreover, uniform and well-defined octahedron-like crystals have better fluorescence properties than irregular flower-like crystals. Annealing treatment, aiming at removing the residual surfactant on the surface, can effectively improve the crystallization and reduce the defects in the crystals. BaWO4:3%Eu3+ microcrystals with octahedron-like annealed at 850 °C for 2 h has the strongest luminescence properties, which can be considered as a red phosphor for white light-emitting diodes (WLEDs).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    C. Anil Kumar, D. Pamu, Ceram. Int. 41, S296–S302 (2015)

    Article  Google Scholar 

  2. 2.

    A. Pandeya, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Sens. Actuator B 209, 352–358 (2015)

    Article  Google Scholar 

  3. 3.

    M.C. Oliveira, J. Andrés, L. Gracia, M.S.M.P. de Oliveira, J.M.R. Mercury, E. Longo, I.C. Nogueira, Sens. Actuator B 463, 907–917 (2019)

    Google Scholar 

  4. 4.

    A. Sahmi, S. Omeiri, K. Bensadok, M. Trari, Mater. Sci. Semicond. Process. 91, 108–114 (2019)

    Article  Google Scholar 

  5. 5.

    H.P. Barbosa, I.G.N. Silva, M. Felinto, E.E.S. Teotonio, O.L. Malta, H.F. Brito, J. Alloys Compd. 696, 820–827 (2017)

    Article  Google Scholar 

  6. 6.

    R. Talebi, J. Mater. Sci.: Mater. Electron. 28, 6782–6787 (2017)

    Google Scholar 

  7. 7.

    J. Zhou, Z.G. Xia, M.X. Yang, K. Shen, J. Mater. Chem. 22, 21935–21941 (2012)

    Article  Google Scholar 

  8. 8.

    S.K. Hussain, J.S. Yu, J. Lumin. 183, 39–47 (2017)

    Article  Google Scholar 

  9. 9.

    P. Du, L.K. Bharat, J.S. Yu, J. Lumin. 633, 37–41 (2015)

    Google Scholar 

  10. 10.

    F.W. Kang, Y.H. Hu, L. Chen, X.J. Wang, H.Y. Wu, Z.F. Mu, J. Lumin. 135, 113–119 (2013)

    Article  Google Scholar 

  11. 11.

    L. Liu, S. Zhang, M.E. Bowden, J. Chaudhuri, J.J. De Yoreo, Cryst. Growth Des. 18, 1367–1375 (2018)

    Article  Google Scholar 

  12. 12.

    H. Wu, J. Yang, X. Wang, S. Gan, L. Li, Solid State Sci. 79, 85–92 (2018)

    Article  Google Scholar 

  13. 13.

    X.Y. Huang, B. Li, H. Guo, Ceram. Int. 43, 10566–10571 (2017)

    Article  Google Scholar 

  14. 14.

    Z.X. Shi, J. Wang, X. Guan, J. Rare Earths 36, 911–916 (2018)

    Article  Google Scholar 

  15. 15.

    Y. Zhang, A. Abraha, R. Zhang, T. Shahbazyan, M. Fadavi, E. Heydari, Q. Dai, Opt. Mater. 84, 115–122 (2018)

    Article  Google Scholar 

  16. 16.

    Y.G. Su, L.P. Li, G.S. Li, Chem. Mater. 20, 6060–6067 (2008)

    Article  Google Scholar 

  17. 17.

    C. Bouzidi, M. Ferhi, H. Elhouichet, M. Ferid, J. Lumin. 161, 448–455 (2015)

    Article  Google Scholar 

  18. 18.

    P. Jena, S.K. Gupta, N.K. Verma, A.K. Singh, R.M. Kadam, New J. Chem. 41, 8947–8958 (2017)

    Article  Google Scholar 

  19. 19.

    Y. Shi, J. Shi, C. Dong, Opt. Mater. 84, 396–403 (2018)

    Article  Google Scholar 

  20. 20.

    H. Zhang, B. Wang, A. Feng, N. Zhang, Z. Jia, Z. Huang, X. Liu, G. Wu, Compos. B 167, 690–699 (2019)

    Article  Google Scholar 

  21. 21.

    P. Afanasiev, Mater. Lett. 61, 4622–4626 (2007)

    Article  Google Scholar 

  22. 22.

    K. Kawashima, J.-H. Kim, I. Cheng, K. Yubuta, K. Shin, Y. Liu, J. Lin, G. Henkelman, C.B. Mullins, Cryst. Growth Des. 18, 5301–5310 (2018)

    Article  Google Scholar 

  23. 23.

    X.N. Chai, J. Li, Y. Zhang, X.S. Wang, Y.X. Li, X. Yao, RSC Adv. 6, 64072–64078 (2016)

    Article  Google Scholar 

  24. 24.

    P.F.S. Pereira, I.C. Nogueira, E. Longo, E.J. Nassar, I.L.V. Rosa, L.S. Cavalcante, J. Rare Earths 33, 13–128 (2015)

    Article  Google Scholar 

  25. 25.

    Z. Lou, J. Hao, M. Cocivera, J. Lumin. 99, 349–354 (2002)

    Article  Google Scholar 

  26. 26.

    L.S. Cavalcante, J.C. Sczancoski, L.F. Lima, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, Cryst. Growth Des. 9, 1002–1012 (2009)

    Article  Google Scholar 

  27. 27.

    V.M. Longo, L. Ecio, S. Cavalcante, E.C. Paris, J. Ulio, C. Sczancoski, P.S. Pizani, M. Siu, J. Andr, E. Longo, J. Phys. Chem. C 115, 5207–5219 (2011)

    Article  Google Scholar 

  28. 28.

    X. Xue, H. Yan, Y. Fu, Solid State Ion. 335, 1–6 (2019)

    Article  Google Scholar 

  29. 29.

    Y.Q. Zhai, W. Zhang, Y.J. Yin, Y. Han, X. Zhao, H.H. Ding, N. Li, Ceram. Int. 43, 841–846 (2017)

    Article  Google Scholar 

  30. 30.

    Y. Zhai, Q. Sun, S. Yang, Y. Liu, J. Wang, S. Ren, S. Ding, J. Alloys Compd. 781, 415–424 (2019)

    Article  Google Scholar 

  31. 31.

    L. Xu, X. Yang, Z. Zhai, X. Chao, Z. Zhang, W. Hou, CrystEngComm 13, 4921–4929 (2011)

    Article  Google Scholar 

  32. 32.

    G. Qiang, Q. Xuefeng, C. Hongliang, D. Weimin, M. Xiaodong, M. Maosong, J. Phys. Chem. B 110, 19295 (2006)

    Article  Google Scholar 

  33. 33.

    Y.F. Liu, L.L. Xia, Y.N. Lu, S.H. Dai, M. Takeguchi, H.M. Hong, Z.G. Pan, J. Colloid Interface Sci. 381, 24–29 (2012)

    Article  Google Scholar 

  34. 34.

    J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, J. Colloid Interface Sci. 330, 227–236 (2009)

    Article  Google Scholar 

  35. 35.

    J.C. Sczancoski, M.D.R. Bomio, L.S. Cavalcante, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, M.S. Li, J. Andres, J. Phys. Chem. C 113, 5812–5822 (2009)

    Article  Google Scholar 

  36. 36.

    Y.F. Liu, L.L. Xia, Y.N. Lu, S.H. Dai, M. Takeguchi, H.M. Hong, Z.G. Pan, J. Colloid Interface Sci. 381, 24–29 (2012)

    Article  Google Scholar 

  37. 37.

    M.C. Oliveira, L. Gracia, I.C. Nogueira, M.F.D. Gurgel, J.M.R. Mercury, E. Longo, J. Andres, Ceram. Int. 42, 10913–10921 (2016)

    Article  Google Scholar 

  38. 38.

    J. Lin, J. Lin, Y.F. Zhu, Inorg. Chem. 46, 8372–8378 (2007)

    Article  Google Scholar 

  39. 39.

    M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1089–1097 (2015)

    Article  Google Scholar 

  40. 40.

    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Mater. Sci. Eng., R 89, 25–32 (2018)

    Article  Google Scholar 

  41. 41.

    Y.P. Wang, Y. Qu, K. Pan, G.F. Wang, Y.D. Li, Chem. Commun. 52, 11124–11126 (2016)

    Article  Google Scholar 

  42. 42.

    B.P. Maheshwary, R.A. Singh, New J. Chem. 39, 4494–4507 (2015)

    Article  Google Scholar 

Download references


This work was supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information



Corresponding authors

Correspondence to Yunfei Liu or Yinong Lyu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhu, Y., Qi, Y. et al. Microwave hydrothermal synthesis, annealing and luminescence properties of BaWO4:3%Eu3+ microcrystals. J Mater Sci: Mater Electron 30, 14190–14199 (2019). https://doi.org/10.1007/s10854-019-01786-z

Download citation