Effects of Pd addition on the interfacial reactions between Cu and Al during ultrasonic welding

  • Yahong Du
  • Ming Wen
  • Hongjun Ji
  • Mingyu Li
  • Zhi-Quan LiuEmail author


The interfacial reactions between Cu and Al during ultrasonic welding were investigated, focusing on the effect of Pd in Pd-coated Cu and Pd-alloyed Cu (0.3 wt% and 2 wt% PdCu). For Pd-coated Cu–Al bonding, it is found that Pd layer would act as diffusion barrier layer at the interface, and intermetallic compounds (IMCs) formed at Pd-free location for as-welded condition. As annealing time increases, Cu atoms and Al atoms bypassed the fractured Pd layer to form IMCs at the interface. Combining experimental observations, a model of Pd diffusion barrier effect was first proposed at the Pd-coated Cu–Al interface. For Pd-alloyed Cu–Al bonding, Pd can promote the atomic diffusion of active elements and accelerate the formation of IMCs, and excessive 2 wt% Pd addition can lead to the appearance of voids and cracks at interface, which is destructive for reliable interconnection structure. The thickness of the interfacial IMCs for pure Cu and 0.3 wt% PdCu at different heat treatment conditions has a linear relationship with the square root of time, which means that the growth of IMCs is controlled by volume diffusion. The diffusion activation energy of IMCs for 0.3 wt% PdCu (46.08 kJ/mol, 52.88 kJ/mol, and 65.35 kJ/mol for Cu9Al4, CuAl and CuAl2 respectively) was smaller than that for pure Cu (60.24 kJ/mol, 58.12 kJ/mol, and 82.94 kJ/mol for Cu9Al4, CuAl and CuAl2 respectively). Furthermore, the percentage of Cu9Al4 in the whole IMC decreased for 0.3 wt% PdCu, which can reduce the halogen corrosion from epoxy molding compound (EMC) during the reliability test of highly accelerated temperature and humidity stress testing (HAST).



This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFB0305700), the National Natural Science Foundation of China (Grant No. 51564025), the National and Local Joint Engineering Laboratory of Advanced Electronic Packaging Materials (Shenzhen Development and Reform Commission 2017-934), and the Fund of the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals (Grant No. SKL-SPM-201803).


  1. 1.
    Preeti S. Chauhan, Anupam Choubey, ZhaoWei Zhong, Michael G. Pecht, Copper Wire Bonding (Springer, New York, 2014)CrossRefGoogle Scholar
  2. 2.
    Martin Schneider-Ramelow, Christian Ehrhardt, Microelectron. Reliab. 63, 336 (2016)CrossRefGoogle Scholar
  3. 3.
    H. Clauberg, P. Backus, B. Chylak, Microelectron. Reliab. 51, 75 (2011)CrossRefGoogle Scholar
  4. 4.
    F.Y. Hung, Y.T. Wang, L.H. Chen, T.S. Lui, Mater. Trans. 47, 1776 (2006)CrossRefGoogle Scholar
  5. 5.
    Z.W. Zhong, Microelectron. Reliab. 51, 4 (2011)CrossRefGoogle Scholar
  6. 6.
    T. Uno, Microelectron. Reliab. 51, 148 (2011)CrossRefGoogle Scholar
  7. 7.
    H. Xu, C. Liu, V. Silberschmidt, Z. Chen, J. Electron. Mater. 39, 124 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, V.L. Acoff, Acta Mater. 59, 5661 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.-W. Lin, R.-Y. Wang, W.-B. Ke, I.S. Wang, Y.-T. Chiu, K.-C. Lu, K.-L. Lin, Y.-S. Lai, Mater. Sci. Eng. A 543, 152 (2012)CrossRefGoogle Scholar
  10. 10.
    Y.H. Du, Z.Q. Liu, H.J. Ji, M.Y. Li, M. Wen, J. Mater. Sci.-Mater. Electron. 29, 13774 (2018)CrossRefGoogle Scholar
  11. 11.
    V.K. Patel, S.D. Bhole, D.L. Chen, Sci. Technol. Weld. Join. 17, 202 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Robson, A. Panteli, P.B. Prangnell, Sci. Technol. Weld. Join. 17, 447 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Santella, E. Brown, M. Pozuelo, T.-Y. Pan, J.-M. Yang, Sci. Technol. Weld. Join. 17, 219 (2012)CrossRefGoogle Scholar
  14. 14.
    Y.Y. Zhao, D. Li, Y.S. Zhang, Sci. Technol. Weld. Join. 18, 354 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Matsuoka, H. Imai, J. Mater. Process. Technol. 209, 954 (2009)CrossRefGoogle Scholar
  16. 16.
    J.W. Yang, B. Cao, X.C. He, H.S. Luo, Sci. Technol. Weld. Join. 19, 500 (2014)CrossRefGoogle Scholar
  17. 17.
    M. Petzold, L. Berthold, D. Katzer, H. Knoll, D. Memhard, P. Meier, K.-D. Lang, Microelectron. Reliab. 40, 1515 (2000)CrossRefGoogle Scholar
  18. 18.
    H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, Scr. Mater. 61, 165 (2009)CrossRefGoogle Scholar
  19. 19.
    H. Xu, C. Liu, V.V. Silberschmidt, S.S. Pramana, T.J. White, Z. Chen, M. Sivakumar, V.L. Acoff, J. Appl. Phys. 108, 113517 (2010)CrossRefGoogle Scholar
  20. 20.
    T.T. Mattila, J.K. Kivilahti, J. Electron. Mater. 34, 969 (2005)CrossRefGoogle Scholar
  21. 21.
    X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, J. Alloy Compd. 264, 201 (1998)CrossRefGoogle Scholar
  22. 22.
    M.P. Shearer, S.K. Sen, C.L. Bauer, Phys. Status Solidi A 69, 139 (1982)CrossRefGoogle Scholar
  23. 23.
    M. Kajihara, Acta Mater. 52, 1193 (2004)CrossRefGoogle Scholar
  24. 24.
    T. Uno, T. Yamada, In Electronic Components and Technology Conference (ECTC), 1725 (2010)Google Scholar
  25. 25.
    T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, Q.X. Yuan, J. Alloy Compd. 616, 550 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yahong Du
    • 1
    • 2
  • Ming Wen
    • 3
  • Hongjun Ji
    • 4
  • Mingyu Li
    • 4
  • Zhi-Quan Liu
    • 1
    • 2
    • 5
    Email author
  1. 1.Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  3. 3.Kunming Institute of Precious MetalsKunmingChina
  4. 4.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen)ShenzhenChina
  5. 5.Shenzhen Institute of Advanced Electronic MaterialsShenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina

Personalised recommendations