Skip to main content

Advertisement

Log in

Surfactants assisted SnO2 nanoparticles synthesized by a hydrothermal approach and potential applications in water purification and energy conversion

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

SnO2 nanoparticles (NPs) were synthesized by facile hydrothermal method in the presence of polyethylene glycol (PEG), cetyl trimethylammonium bromide (CTAB) and sodium hexametaphosphate (SHMP) as surfactant. The synthesized samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), UV–visible diffuse reflectance spectroscopy (UV–visible DRS) and photoluminescence (PL). The XRD studies revealed that the position of diffraction peaks agreed well with the reflection of a tetragonal structure of SnO2 phase. The structure of the SnO2 did not change by introducing surfactants but the crystallite size was decreased. The optical studies revealed a clear blue shift in the band gap energy (Eg) with a decrease in particle size. The PL intensity of SHMP assisted NPs is lower than that of bare SnO2 and other surfactant assisted SnO2 NPs, which indicated the suppression of the recombination of the photogenerated carriers. These results reveal that SHMP assisted SnO2 NPs is suitable for further electrochemical and photocatalytic activity. The surfactant (SHMP) assisted SnO2 photocatalyst exhibited the increased photocatalytic activities compared with the bare SnO2 photocatalyst. Furthermore, the SHMP assisted SnO2 electrode exhibited the increased supercapacitor performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. Barik, N. Devi, V.K. Perla, S.K. Ghosh, K. Mallick, Stannous sulphide nanoparticles for supercapacitor application. Appl. Surf. Sci. 472, 112–117 (2019)

    Article  Google Scholar 

  2. A.A. Ali, A.A. Nazeer, M. Madkour, A. Bumajdad, F.A. Sagheer, Novel supercapacitor electrodes based semiconductor nanoheterostructure of CdS/rGO/CeO2 as efficient candidates. Arab. J. Chem. 11(5), 692–699 (2018)

    Article  Google Scholar 

  3. J.P. Zheng, T.R. Jow, High energy and high power density electrochemical capacitors. J. Power Sour. 62(2), 155–159 (1996)

    Article  Google Scholar 

  4. L. Mai, X. Tian, X. Xu, L. Chang, L. Xu, Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 114(23), 11828–11862 (2014)

    Article  Google Scholar 

  5. H. Chen, M. Ling, L. Hencz, H.Y. Ling, G. Li, Z. Lin, G. Liu, S. Zhang, Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118(18), 8936–8982 (2018)

    Article  Google Scholar 

  6. J. Xiao, Q.L. Wu, P. Liu, Y. Liang, H.B. Li, M.M. Wu, G.W. Yang, Highly stable sub-5 nm Sn6 O4 (OH)4 nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange. Nanotechnology 25, 135702 (2014)

    Article  Google Scholar 

  7. S.P. Kim, M.Y. Choi, H.C. Choi, Photocatalytic activity of SnO2 nanoparticles in methylene blue degradation. Mater. Res. Bull. 74, 85–89 (2016)

    Article  Google Scholar 

  8. G. Durai, M. Rajasimman, Biological treatment of tannery wastewater—a review. J. Environ. Sci. Technol. 4(1), 1–17 (2011)

    Article  Google Scholar 

  9. S. Niu, Y. Wang, S. Lu, D. Wang, P. Wang, Fabrication and photocatalytic properties of SnO2 double-shelled and triple-shelled hollow spheres. Solid State Sci. 56, 63–67 (2016)

    Article  Google Scholar 

  10. A. Esmaeili-Bafghi-Karimabad, D. Ghanbari, M. Salavati-Niasari, L. Nejati-Moghadam, S. Gholamrezaei, Photo-catalyst tin dioxide: synthesis and characterization different morphologies of SnO2 nanostructures and nanocomposites. J. Mater. Sci. 26(9), 6970–6978 (2015)

    Google Scholar 

  11. Y. Yu, S. Qu, D. Zang, L. Wang, H. Wu, Fast synthesis of Pt nanocrystals and Pt/microporous La2O3 materials using acoustic levitation. Nanoscale Res. Lett. 13, 50 (2018)

    Article  Google Scholar 

  12. S. Qu, Y. Yu, K. Lin, P. Liu, C. Zheng, L. Wang, T. Xu, Z. Wan, H. Wu, Easy hydrothermal synthesis of multi-shelled La2O3 Hollow spheres for lithium-ion batteries. J. Mater. Sci. 29(2), 1232–1237 (2018)

    Google Scholar 

  13. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, Progress in low-frequency microwave absorbing materials. J. Mater. Sci. 29(20), 17122–17136 (2018)

    Google Scholar 

  14. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  Google Scholar 

  15. Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Recent progresses of high-temperature microwave-absorbing materials. NANO 13(6), 1830005 (2018)

    Article  Google Scholar 

  16. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem. Eur. J. 22, 8864–8871 (2016)

    Article  Google Scholar 

  17. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  Google Scholar 

  18. Z.R. Jia, Z.G. Gao, D. Lan, Y.H. Cheng, G.L. Wu, H.J. Wu, Effects of filler loading and surface modification on electrical and thermal properties of epoxy/montmorillonite composite. Chin. Phys. B 27(11), 117806 (2018)

    Article  Google Scholar 

  19. D. Lan, M. Qin, R. Yang, S. Chen, H. Wu, Y. Fan, Q. Fu, F. Zhang, Facile synthesis of hierarchical chrysanthemum-like copper cobaltate-copper oxide composites for enhanced microwave absorption performance. J. Colloid Interface Sci. 533, 481–491 (2019)

    Article  Google Scholar 

  20. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  Google Scholar 

  21. L. Xiao, W. Sun, X. Zhou, Z. Cai, F. Hu, Facile synthesis of mesoporous MnO2 nanosheet and microflower with efficient photocatalytic activities for organic dyes. Vacuum 156, 291–297 (2018)

    Article  Google Scholar 

  22. X. Li, C. Hu, X. Wang, Y. Xi, Photocatalytic activity of CdS nanoparticles synthesized by a facile composite molten salt method. Appl. Surf. Sci. 258(10), 4370–4376 (2012)

    Article  Google Scholar 

  23. B.G.S. Raj, A.M. Asiri, A.H. Qusti, J.J. Wu, S. Anandan, Sonochemically synthesized MnO2 nanoparticles as electrode material for supercapacitors. Ultrason. Sonochem. 21(6), 1933–1938 (2014)

    Article  Google Scholar 

  24. S. Sagadevan, Z.Z. Chowdhury, M.R.B. Johan, F.A. Aziz, L.S. Roselin, H.L. Hsu, R. Selvin, Synthesis characterization and electrochemical properties of cadmium sulfide-reduced graphene oxide nanocomposites. Results Phys. 12, 878–885 (2019)

    Article  Google Scholar 

  25. R.M. Kore, B.J. Lokhande, A robust solvent deficient route synthesis of mesoporous Fe2O3 nanoparticles as supercapacitor electrode material with improved capacitive performance. J. Alloys Compd. 725, 129–138 (2017)

    Article  Google Scholar 

  26. G.V. Pereira, V.A. Freitas, H.S. Oliveira, L.C.A. Oliveira, J.C. Belchior, A photocatalytic process for the eradication of dengue through OH generation in the presence of sunlight and iron oxide. RSC Adv. 4, 63650–63654 (2014)

    Article  Google Scholar 

  27. M. Jayalakshmi, M. MohanRao, N. Venugopal, Kwang-BumKim, Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sour. 166(2), 578–583 (2007)

    Article  Google Scholar 

  28. M. Shanmugam, A. Alsalme, A. Alghamdi, R. Jayavel, Enhanced photocatalytic performance of Graphene-V2O5 nano-composite in the degradation of methylene blue dye under direct sunlight. ACS Appl. Mater. Interfaces. 7(27), 14905–14911 (2015)

    Article  Google Scholar 

  29. M. Wu, W. Zeng, Q. He, J. Zhang, Hydrothermal synthesis of SnO2 nanocorals, nanofragments and nanograss and their formaldehyde gas-sensing properties. Mater. Sci. Semicond. Process. 16, 1495–1501 (2013)

    Article  Google Scholar 

  30. B.M. Matin, Y. Mortazavi, A.A. Khodadadi, A. Abbasia, A.A. Firooz, Alkaline- and template-free hydrothermal synthesis of stable SnO2 nanoparticles and nanorods for CO and ethanol gas sensing. Sens. Actuators, B 151, 140–145 (2010)

    Article  Google Scholar 

  31. E. Ramasamy, J. Lee, Ordered mesoporous SnO2-based photoanodes for high-performance dye-sensitized solar cells. J. Phys. Chem. C 114, 22032–22037 (2010)

    Article  Google Scholar 

  32. Y. Yang, X. Zhao, H.E. Wang, M. Li, C. Hao, M. Ji, S. Ren, G. Cao, Phosphorized SnO2/Graphene heterostructure for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A. 6, 3479–3487 (2018)

    Article  Google Scholar 

  33. Y. Sun, W.D. Chemelewski, S.P. Berglund, C. Li, H. He, G. Shi, C.B. Mullins, Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. Appl. Mater. Interfaces 6, 5494–5499 (2014)

    Article  Google Scholar 

  34. L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Photoluminescence studies on nanocrystalline tin oxide powder for optoelectronic devices. Am. J. Mater. Sci. 2(2), 6–10 (2012)

    Article  Google Scholar 

  35. N. Talebian, F. Jafarinezhad, Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceram. Int. 39(7), 8311–8317 (2013)

    Article  Google Scholar 

  36. B. Jia, W. Jia, F. Qu, X. Wu, General strategy for self assembly of mesoporous SnO2 nanospheres and their applications in water purification. RSC Adv. 3, 12140–12148 (2013)

    Article  Google Scholar 

  37. M. Zhao, Q. Zhao, J. Qiu, H. Xue, Huan Pang, Tin-based nanomaterials for electrochemical energy storage. RSC Adv. 6, 95449–95468 (2016)

    Article  Google Scholar 

  38. A.P. Gaikwad, S.H. Patil, K.R. Patil, S.D. Sathaye, C.V. Rode, Composite thin film of simultaneously formed carbon and SnO2 QDs for supercapacitance application. New J. Chem. 42, 8823–8830 (2018)

    Article  Google Scholar 

  39. Z. He, J. Zhou, Synthesis, characterization and activity of tin oxide nanoparticles: influence of solvothermal time on photocatalytic degradation of rhodamine B. Mod. Res. Catal. 2, 13–18 (2013)

    Article  Google Scholar 

  40. T.T. Bhosale, H.M. Shinde, N.L. Gavade, S.B. Babar, V.V. Gawade, S.R. Sabale, R.J. Kamble, B.S. Shirke, K.M. Garadkar, Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of calotropis gigantea for photocatalytic applications. J. Mater. Sci.: Mater. Electron. 29, 6826–6834 (2018)

    Google Scholar 

  41. K. Bouras, J.L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, A. Slaoui, Optical and structural properties of Nd doped SnO2 powder fabricated by the sol-gel method. J. Mater. Chem. C 2, 8235–8243 (2014)

    Article  Google Scholar 

  42. A. Kumar, L. Rout, R.S. Dhaka, S.L. Samal, P. Dash, Design of graphene oxide-SnO2 nanocomposite with superior catalytic efficiency for the synthesis of β-enaminones and β-enaminoesters. RSC Adv. 5, 39193–39204 (2015)

    Article  Google Scholar 

  43. W.W. Wang, Y.J. Zhu, L.X. Yang, ZnO–SnO2 hollow spheres and hierarchical nanosheets:hydrothermal preparation, formation mechanism and photocatalytic properties. Adv. Funct. Mater. 17, 59–64 (2007)

    Article  Google Scholar 

  44. M. Zhang, G. Sheng, J. Fu, T. An, X. Wang, X. Hu, Novel preparation of nanosized ZnO–SnO2 with high photocatalytic activity by homogeneous co-precipitation method. Mater. Lett. 59, 3641–3644 (2005)

    Article  Google Scholar 

  45. Y.C. Zhang, Z.N. Du, M. Zhang, Hydrothermal synthesis of SnO2/SnS2 nanocomposite with high visible light-driven photocatalytic activity. Matter. Lett. 65, 2891–2894 (2011)

    Article  Google Scholar 

  46. G.E. Patil, D.D. Kajale, V.B. Gaikwad, G.H. Jain, Preparation and characterization of SnO2 nanoparticles by hydrothermal route. Int. Nano Lett. 2, 17–21 (2012)

    Article  Google Scholar 

  47. T. Mahalingam, V. Dhanasekaran, R. Chandramohan, J.K. Rhee, Microstructural properties of electrochemically synthesized ZnSe thin films. J. Mater. Sci. 47, 1950–1957 (2012)

    Article  Google Scholar 

  48. R.K. Mishra, P.P. Sahay, Zn-doped and undoped SnO2 nanoparticles: a comparative structural, optical and LPG sensing properties study. Mater. Res. Bull. 47, 4112–4118 (2012)

    Article  Google Scholar 

  49. A. Arunachalam, S. Dhanapandian, C. Manoharan, M. Bououdina, G. Ramalingam, M. Rajasekaran, M. Radhakrishnan, A. MohamedIbraheem, Influence of sprayed nanocrystalline Zn-doped TiO2 photoelectrode with the dye extracted from Hibiscus Surattensis as sensitizer in dye-sensitized solar cell. Ceram. Int. 42(9), 11136–11149 (2016)

    Article  Google Scholar 

  50. S. Harish, J. Archana, M. Navaneethan, A. Silambarasan, K.D. Nisha, S. Ponnusamy, C. Muthamizhchelvan, H. Ikeda, D.K. Aswal, Y. Hayakawa, Enhanced visible light induced photocatalytic activity on the degradation of organic pollutant by SnO nanoparticles decorated hierarchical ZnO nanostructures. RSC Adv. 6, 89721–89731 (2016)

    Article  Google Scholar 

  51. L.P. Singh, M.N. Luwang, S.K. Srivastava, Luminescence and photocatalytic studies of Sm3+ ion doped SnO2 nanoparticles. New J. Chem. 38, 115–121 (2014)

    Article  Google Scholar 

  52. V. Bonu, N. Kumar, A. Das, S. Dash, A.K. Tyagi, Enhanced lubricity of SnO2 nanoparticles dispersed polyolester nanofluid. Ind. Eng. Chem. Res. 55, 2696–2703 (2016)

    Article  Google Scholar 

  53. E. Duraisamy, H.T. Das, A.S. Sharma, P. Elumalai, supercapacitor and photocatalytic performances of hydrothermally-derived Co3O4/CoO @ carbon nanocomposite. New J. Chem. 42, 6114–6124 (2018)

    Article  Google Scholar 

  54. H. Chen, L. Ding, W. Sun, Q. Jiang, J. Hu, J. Li, Synthesis and characterization of Ni doped SnO2 microspheres with enhanced visible-light photocatalytic activity. RSC Adv. 5, 56401–56409 (2015)

    Article  Google Scholar 

  55. Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang, J. Qiu, Dually fixed SnO2 nanoparticles on graphene nanosheets by polyaniline coating for superior lithium storage. ACS Appl. Mater. Interfaces. 7(4), 2444–2451 (2015)

    Article  Google Scholar 

  56. J. Gajendiran, V. Rajendran, A study of the nano-structured aggregated tin oxides (SnO2/SnO) and their structural and photoluminescence properties by a hydrothermal method. Mater. Lett. 139, 116–118 (2015)

    Article  Google Scholar 

  57. B. Saravanakumar, G. Ravi, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, Surfactant assisted zinc doped tin oxide nanoparticles for supercapacitor applications. J. Sol-Gel. Sci. Technol. 86(3), 521–535 (2018)

    Article  Google Scholar 

  58. A. Bhattacharjee, M. Ahmaruzzaman, T. Sinha, Surfactant effects on the synthesis of durable tin-oxide nanoparticles and its exploitation as a recyclable catalyst for elimination of toxic dye: a green and efficient approach for wastewater treatment. RSC Adv. 4, 51418–55142 (2014)

    Article  Google Scholar 

  59. W. Wei, S. Gao, Z. Yang, Y. Wu, C. Chen, L. Guo, J. Li, Porous SnO2 nanocubes with controllable pore volume and their Li storage performance. RSC Adv. 4, 13250–13255 (2014)

    Article  Google Scholar 

  60. H. Yan, P. Song, S. Zhang, Z. Yang, Q. Wang, Dispersed SnO2 nanoparticles on MoS2 nanosheets for superior gas-sensing performances to ethanol. RSC Adv. 5, 79593–79599 (2015)

    Article  Google Scholar 

  61. X. Li, B. Lin, B. Xu, Z. Chen, Q. Wang, J. Kuang, H. Zhu, Preparation and characterization of mesoporous SnO2-pillared HTaWO6 with enhanced photocatalytic activity. J. Mater. Chem. 20, 3924–3931 (2010)

    Article  Google Scholar 

  62. B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-doped Ag–ZnO photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catal. Sci. Technol. 2, 2319–2326 (2012)

    Article  Google Scholar 

  63. Y. Li, L. Zhu, Y. Guo, H. Song, Z. Lou, Z. Ye, A new type of hybrid nanostructures: complete photo-generated carriers separation and ultrahigh photocatalytic activity. J. Mater. Chem. A 2, 14245–14250 (2014)

    Article  Google Scholar 

  64. S.K. Jayaraj, V. Sadishkumar, T. Arun, P. Thangadurai, Enhanced photocatalytic activity of V2O5 nanorods for the photodegradation of organic dyes: a detailed understanding of the mechanism and their antibacterial activity. Mater. Sci. Semicond. Process. 85, 122–133 (2018)

    Article  Google Scholar 

  65. K. Manikandan, S. Dhanuskodi, A.R. Thomas, N. Maheswari, G. Muralidharan, D. Sastikumar, Size-strain distribution analysis of SnO2 nanoparticles and its multifunctional applications of fiber optic gas sensor supercapacitor and optical limiter. RSC Adv. 6, 90559–90570 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Dhanapandian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthakaran, S., Dhanapandian, S., Krishnakumar, N. et al. Surfactants assisted SnO2 nanoparticles synthesized by a hydrothermal approach and potential applications in water purification and energy conversion. J Mater Sci: Mater Electron 30, 13174–13190 (2019). https://doi.org/10.1007/s10854-019-01681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01681-7

Navigation