Advertisement

Enhanced dielectric properties of barium strontium titanate thin films by doping modification

  • Libin GaoEmail author
  • Zhipu Guan
  • Shixian Huang
  • Kexin Liang
  • Hongwei Chen
  • Jihua ZhangEmail author
Review
  • 165 Downloads

Abstract

Barium strontium titanate (BaxSr1–xTiO3, BST) thin films have large dielectric constant, low dielectric loss, especially the high dielectric tunability, which make them prospective candidates for microwave tunable applications. Resent developments in BST thin films by doping modification are reviewed. The A-site doping, B-site doping, and both sites codoping modifications are summarized and analyzed, respectively. The comparison of dielectric properties and microstructure of the BST thin films with different sites doping modifications is critically analyzed. The single A-site or B-site doping modification cannot obtain the BST thin films with balanced enhancement of the dielectric properties. However, the different elements codoping in both A-site and B-site of BST thin films is demonstrated to be an effective method to achieve balanced dielectric property optimization.

Notes

Acknowledgements

The authors grateful acknowledge the support from the Natural Science Foundation of China (Grant No. 51602037) and the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (KFJJ201510).

References

  1. 1.
    P. Bao, T. Jackson, X. Wang, M. Lancaster, Barium strontium titanate thin film varactors for room-temperature microwave device applications. J. Phys. D Appl. Phys. 41, 63001–63002 (2008)Google Scholar
  2. 2.
    S. Bin-Omran, Phase-transition character in (Ba0.5Sr0.5)TiO3 nanodots from first principles. J. Alloy. Comp. 674, 82–88 (2016)Google Scholar
  3. 3.
    C. Carlson, T. Rivkin, P. Parilla, J. Perkins, D. Ginley, A. Kozyrev, V. Oshadchy, A. Pavlov, Large dielectric constant (ε/ε0 > 6000) BaO4SrO6TiO3 thin films for high-performan cemicrowave phase shifters. Appl. Phys. Lett. 76, 1920–1922 (2000)Google Scholar
  4. 4.
    F. Zimmermann, M. Voigts, C. Weil, R. Jakoby, P. Wang, W. Menesklou, E. IversTiffee, Investigation of barium strontium titanate thick films for tunable phase shifters. J. Eur. Ceram. Soc. 21, 2019–2023 (2001)Google Scholar
  5. 5.
    A. Ahmed, I. Goldthorpe, A. Khandani, Electrically tunable materials for microwave applications. Appl. Phys. Rev. 2(1), 1–18 (2015)Google Scholar
  6. 6.
    G. Saddik, J. Son, S. Stemmer, R. York, Improvement of barium strontium titanate solidly mounted resonator quality factor by reduction in electrode surface roughness. J. Appl. Phys. 109(9), 91606–91609 (2011)Google Scholar
  7. 7.
    Y. Hui, L. Li, W. Zhang, D. Xu, H. Dong, Investigation on tunable performance of BMN/BST multilayer and BMN–BST composite thin films. J. Am. Cerem. Soc. 98(3), 819–823 (2015)Google Scholar
  8. 8.
    L. Sengupta, J. Synowcyznski, L. Chiu, Investigation of the effect of particle size on the optical and electronic properties of Ba1–xSrxTiO3 composite ceramics. Integrated Ferroelectrics 17(1–4), 287–296 (1997)Google Scholar
  9. 9.
    M. Lancaster, J. Powell, A. Porch, Thin-film ferroelectric microwave devices. Super. Sci. Technol. 11(11), 1323–1334 (1999)Google Scholar
  10. 10.
    O. Vendik, E. Hollmann, A. Kozyrev, A. Prudan, Ferroelectric tuning of planar and bulk microwave devices. J. Super. 12(2), 325–338 (1999)Google Scholar
  11. 11.
    X. Xi, H. Li, W. Si, A. Sirenko, I. Akimov, J. Fox, A. Clark, J. Hao, Oxide thin films for tunable microwave devices. J. Electroceramics 4(2–3), 393–405 (2000)Google Scholar
  12. 12.
    F. Miranda, F. Wankeuls, R. Romanofsky, C. Mueller, S. Alterovitz, G. Subramanyam, Ferroelectric thin films-based technology for frequency and phase-agile microwave communication applications. Integrated Ferroelectrics 42(1), 131–149 (2002)Google Scholar
  13. 13.
    S. Baik, N. Setter, Auciello, Science of ferroelectric thin films and application to devices. J. Appl. Phys. 100(5), 270–284 (2006)Google Scholar
  14. 14.
    D. Korn, H. Wu, A comprehensive review of microwave system requirements on thin-film ferroelectrics. Integrated Ferroelectrics 24(1–4), 215–237 (1999)Google Scholar
  15. 15.
    A. Tagantsev, V. Sherman, K. Astafiev, J. Venkatesh, N. Setter, Ferroelectric materials for microwave tunable applications. J. Electroceramics 14(3), 199–203 (2005)Google Scholar
  16. 16.
    A. Vorobiev, P. Rundqvist, K. Khamchane, S. Gevorgian, Silicon substrate integrated high Q-factor parallel-plate ferroelectric varactors for microwave/millimeterwave applications. Appl. Phys. Lett. 83, 3144–3146 (2003)Google Scholar
  17. 17.
    C.J.G. Meyers, C.R. Freeze, S. Stemmer, R.A. York, Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE. Appl. Phys. Lett. 111, 262903 (2017)Google Scholar
  18. 18.
    R.D. Paolis, F. Coccetti, G. Guegan, S. Payan, M. Maglione, Characterization of ferroelectric BST MIM capacitors up to 65 GHz for a compact phase shifter at 60 GHz, Proc. Eur. Mic. Conf. (2014) 492–495Google Scholar
  19. 19.
    K.K. Karnati, Y. Shen, M.E. Trampler, S. Ebadi, P.F. Wahid, X. Gong, A BST-integrated capacitively loaded patch for Ka- and X-band beam steerable reflect array antennas in satellite communications. IEEE Trans. Antennas Propagation. 63(4), 1324–1333 (2015)Google Scholar
  20. 20.
    M. Sazegar, Y. Zheng, H. Maune, C. Damm, X. Zhou, R. Jakoby, Compact tunable phase shifters on screen-printed BST for balanced phased arrays. IEEE Trans. Micro. Theory Technol. 59(12), 3331–3337 (2011)Google Scholar
  21. 21.
    M. Kang, K. Cho, S. Oh, Y. Do, C. Kang, Low-temperature crystallization and electrical properties of BST thin films using excimer laser annealing. C. App. Phy. 11, S66–S69 (2011)Google Scholar
  22. 22.
    D. Levasseur, H. El-Shaarawi, S. Pacchini, A. Rousseau, S. Payan, G. Guegan, M. Maglione, Systematic investigation of the annealing temperature and composition effects on the dielectric properties of sol–gel BaxSr1−xTiO3 thin films. J. Eur. Cer. Soc. 33, 139–146 (2013)Google Scholar
  23. 23.
    X. Zhou, M. Sazegar, F. Stemme, J. Haußelt, R. Jakoby, J. Binder, Correlation of the microstructure and microwave properties of Ba0.6Sr0.4TiO3 thick-films. J. Eur. Cer. Soc. 32, 4311–4318 (2012)Google Scholar
  24. 24.
    S. Ezhilvalavan, T. Tseng, Progress in the developments of (Ba, Sr)TiO3 (BST) thin films for Gigabit era DRAMs. Mater. Chem. Phys. 65(3), 227–248 (2000)Google Scholar
  25. 25.
    K. Ahn, S. Baik, S. Sang, Significant suppression of leakage current in (Ba, Sr)TiO3 thin films by Ni or Mn doping. J. Appl. Phys. 92(5), 2651–2654 (2002)Google Scholar
  26. 26.
    M. Cole, C. Hubbard, E. Ngo, M. Ervin, M. Wood, R. Geyer, Structure–property relationships in pure and acceptor-doped Ba1−xSrxTiO3 thin films for tunable microwave device applications. J. Appl. Phys. 92(1), 475–483 (2002)Google Scholar
  27. 27.
    M. Jain, S. Majumder, R. Katiyar, F. Miranda, F. Keuls, Improvement in electrical characteristics of graded manganese doped barium strontium titanate thin films. Appl. Phys. Lett. 82(12), 1911–1913 (2003)Google Scholar
  28. 28.
    W. Lee, H. Kim, Electrical properties of barium strontium titanate (BST) thin films deposited on various PT-base electrodes. Integrated Ferroelectrics 11(1), 111–119 (1995)Google Scholar
  29. 29.
    J. Juuti, Multilayer BST-COC composite with enhanced high frequency dielectric properties. Ferroelectrics 387(1), 210–215 (2009)Google Scholar
  30. 30.
    W. Hu, C. Yang, W. Zhang, Y. Qiu, Dielectric characteristics of sol–gel-derived BST/BSLaT/BST multilayer. J. S-G. Sci. Technol. 36(3), 249–255 (2005)Google Scholar
  31. 31.
    K. Jim, D. Wang, C. Leung, C. Choy, H. Chan, One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3/MgO multilayer thin films. J. Appl. Phys. 103(8), 83107–83113 (2008)Google Scholar
  32. 32.
    H. Tian, Y. Wang, D. Wang, J. Miao, J. Qi, H. Chan, C. Choy, Dielectric properties and abnormal C–V characteristics of Ba05Sr05TiO3–Bi15ZnNb15O7 composite thin films grown on MgO (001) substrates by pulsed laser deposition. Appl. Phys. Lett. 89(14), 1–3 (2006)Google Scholar
  33. 33.
    E. Cukauskas, S. Kirchoefer, J. Pond, Low-loss Ba0.5Sr0.5TiO3 thin films by inverted cylindrical magnetron sputtering. J. Appl. Phys. 88(5), 2830–2835 (2000)Google Scholar
  34. 34.
    S. Halder, T. Schneller, R. Meyer, R. Waser, Effect of ozone treatment on the electrical properties of (Ba0.7Sr0.3)TiO3 thin films. J. Appl. Phys. 97(11), 114904–114909 (2005)Google Scholar
  35. 35.
    S. Manavalan, Structural and electrical properties of barium strontium titanate thin films for tunable microwave applications (University of South Florida, New York, 2005), pp. 4–9Google Scholar
  36. 36.
    M. Chiu, H. Yao, C. Huang, F. Shieu, Improvement of dielectric properties of Ba0.6Sr0.4TiO3 thin films by MgO doping. J. Appl. Phys. 102(1), 935–1010 (2007)Google Scholar
  37. 37.
    H. Kim, M. Lim, H. Kim, I. Kim, Characterization of Ni-doped BST thin films on LSCO buffer layers prepared by pulsed laser deposition. Elect. Sol-State. Lett. 7(2), J1–J3 (2004)Google Scholar
  38. 38.
    X. Li, K. Choy, I. Harrison, Co-doped BST thin films for tunable microwave applications. Surf. Coat. Technol. 205(8), 2989–2993 (2011)Google Scholar
  39. 39.
    X. Luo, J. Chen, Y. Fan, Z. Hu, Q. Zheng, Effect of Rb-doping on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films prepared by sol–gel. Ceram. Inter. 42, 17229–17236 (2016)Google Scholar
  40. 40.
    J. Liao, X. Wei, Z. Xu, P. Wang, Effect of potassium-doped concentration on structures and dielectric performance of barium–strontium–titaniumfilms. Vacuum 107(3), 29–296 (2014)Google Scholar
  41. 41.
    S. Wang, M. Guo, T. Liu, S. Guo, M. Li, X. Zhao, Effect of K-doping on the dielectric and tunable properties of Ba0.6Sr0.4TiO3 thin films prepared by RF magnetron sputtering. J. Crystal. Grow. 306, 22–26 (2007)Google Scholar
  42. 42.
    R. Upadhyay, S. Annam, M. Patel, U. Joshi, Influence of aliovalent doping on dielectric properties of Ba0.6Sr0.4TiO3 thin film for voltage tunable applications. Integrated Ferroelectrics 167, 184–191 (2015)Google Scholar
  43. 43.
    K. Sekhar, S. Key, K. Hong, S. Chan, M. Jong, S. Dong, C. Jun, C. Jong, S. Yong, Thickness-dependent tunable characteristics of (Ba0.5Sr0.5)0.925K0.075TiO3 thin films prepared by pulsed laser deposition. Curr. Appl. Phys. 12, 654–658 (2012)Google Scholar
  44. 44.
    K. Sekhar, S. Key, K. Hong, S. Chan, M. Jong, S. Dong, C. Jun, C. Jong, S. Yong, Enhanced dielectric and tunable characteristics of K-doped Ba0.5Sr0.5TiO3 thin films prepared by pulsed laser deposition. Thin. Sold. Film. 527, 267–272 (2013)Google Scholar
  45. 45.
    J. Li, D. Jin, L. Zhou, J. Cheng, Dielectric properties of Barium Strontium Titanate (BST) ceramics synthesized by using mixed-phase powders calcined at varied temperatures. Mater. Lett. 76, 100–102 (2012)Google Scholar
  46. 46.
    L. Zhang, J. Zhai, X. Yao, Dielectric properties of barium strontium titanate thick films prepared by electrophoretic deposition. Mater. Res. Bull. 44, 1058–1061 (2009)Google Scholar
  47. 47.
    J. Qiu, G. Liu, J. Wolfman, C. Autret-Lambert, S. Roger, J. Gao, Structure and dielectric characteristics of continuous composition spread Ba1–xSrxTiO3 thin films by combinatorial pulsed laser deposition. Ceram. Integrated 142, 6408–6412 (2016)Google Scholar
  48. 48.
    C. Mao, S. Yan, S. Cao, C. Yao, F. Cao, G. Wang, X. Dong, X. Hu, C. Yang, Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics. J. Eur. Ceram. Soc. 34, 2933–2939 (2014)Google Scholar
  49. 49.
    R. Upadhyay, K. Jalaja, U. Joshi, Structural and electrical properties of Ba06 Sr04 TiO3 thin film on LNO/Pt bottom electrode. AIP. Con. Pro. 1837(1), 1–5 (2017)Google Scholar
  50. 50.
    C. Lee, Y. Oh, D. Lee, D. Choi, Influence of annealing temperature on the dielectric properties of BaSrTiO3 thin films deposited on various substrates. J. Kor. Phys. Soc. 69(10), 1571–1574 (2016)Google Scholar
  51. 51.
    J. Wang, T. Zhang, R. Pan, J. Jiang, Z. Ma, C. Xiang, Investigation on the dielectric properties of (Ba, Sr)TiO3 thin films on hybrid electrodes. Mater. Chem. Phys. 121, 28–31 (2010)Google Scholar
  52. 52.
    S. Fuentes, E. Chávez, L. Padilla-Campos, D. Diaz, Influence of reactant type on the Sr incorporation grade and structural characteristics of Ba1−xSrxTiO3 (x = 0−1) grown by sol–gel–hydrothermal synthesis. Ceram. Inter. 39, 8823–8831 (2013)Google Scholar
  53. 53.
    W. Qin, J. Zhu, J. Xiong, J. Tang, W. Jie, X. Wei, Y. Zhang, Y. Li, Electrical behavior of Y-doped Ba0.6Sr0.4TiO3 thin films. J. Mater. Sci: Mater. Electr. 18, 1217–1220 (2007)Google Scholar
  54. 54.
    L. Gao, X. Yang, L. Zhang, X. Yao, Structure and dielectric properties of Ca-doped (Ba0.7Sr0.3) TiO3 thin films fabricated by sol–gel method. J. Electr. 21, 645–648 (2008)Google Scholar
  55. 55.
    L. Xiao, K. Choy, I. Harrison, Co-doped BST thin films for tunable microwave applications. Sur. Coat. Technol. 205, 2989–2993 (2008)Google Scholar
  56. 56.
    C. Chen, A. Wei, Y. Li, K. Zhou, D. Zhang, Improved tunable properties of Co doped Ba0.8Sr0.2TiO3 thin films prepared by sol–gel method. J. Alloy Comp. 692, 204–211 (2017)Google Scholar
  57. 57.
    K. Kim, C. Kim, D. Senior, D. Kim, Y. Yoon, Microwave characteristics of sol–gel based Ag-doped (Ba0.6Sr0.4)TiO3 thin films. Thin Solid Film 565, 172–178 (2014)Google Scholar
  58. 58.
    I. Reddy, C. Reddy, M. Cho, J. Shim, Morphological and chemical structure of silver doped barium strontium titanate thin films fabricated via pulsed laser deposition. Mater. Res. Exp. 4(7), 076406 (2017)Google Scholar
  59. 59.
    K. Kim, C. Kim, Electrical and dielectric properties of Ce-doped Ba0.6Sr0.4TiO3 thin films. Sur. Coa. Technol. 200, 4708–4712 (2006)Google Scholar
  60. 60.
    S. Wang, B. Cheng, C. Wang, S. Redfern, S. Dai, K. Jin, H. Lu, Y. Zhou, Z. Chen, G. Yang, Influence of Ce doping on leakage current in Ba0.5Sr0.5TiO3 films. J. Phys. D: Appl. Phys. 38, 2253–2257 (2005)Google Scholar
  61. 61.
    M. Sedlar, M. Sayer, L. Weaver, Sol–gel processing and properties of cerium doped Barium Strontium Titanate thin films. J. Sol-Gel. Sci. Technol. 5(3), 201–210 (1995)Google Scholar
  62. 62.
    S. Basu, A. Verma, D. Agrawal, Y. Mohapatra, R. Katiyar, Effect of uniform and periodic doping by Ce on the properties of barium strontium titanate thin films. J. Electr. 19(2), 229–236 (2007)Google Scholar
  63. 63.
    Y. Zeng, H. Zhang, S. Jiang, M. Shi, W. Lu, Fabrication and characteristics of Pb doped BST ferroelectric thin films for uncooled infrared focal plane arrays. Integrated Ferroelectrics 82, 91–99 (2006)Google Scholar
  64. 64.
    V. Mudinepalli, S. Song, B. Murty, Microwave sintering effect on structural and dielectrical properties of Ba1–x(Sr/Pb)xTiO3 (x = 02 for Sr and Pb) ceramics. J. Mater. Sci: Mater. Elect. 24, 2141–2150 (2013)Google Scholar
  65. 65.
    S. Yun, X. Wang, B. Li, D. Xu, Dielectric properties Ca-substituted barium strontium titanate ferroelectric ceramics. Sol. Stat. Commun. 143, 461–465 (2007)Google Scholar
  66. 66.
    M. Cole, P. Joshi, M. Ervin, La doped Ba1−xSrxTiO3 thin films for tunable device applications. J. Appl. Phys. 89(11), 6336–6340 (2001)Google Scholar
  67. 67.
    J. Chen, La doping effect on the dielectric property of barium strontium titanate glasse ceramics. J. Mater. Sci. Technol. 30(3), 95–298 (2014)Google Scholar
  68. 68.
    S. Hao, C. Wang, D. Fu, J. Zhang, Y. Wei, W. Wang, Preparation and characterization of La-doped Ba(1−x)SrxTiO3 powders and thin films. Thin Solid Films 518, 5645–5648 (2010)Google Scholar
  69. 69.
    W. Hu, C. Yang, W. Zhang, Fabrication and characteristics of La, Cd and Sn doped BST thin films by sol–gel method. J. Mater. Sci: Mater. Electr. 19(12), 1197–1201 (2008)Google Scholar
  70. 70.
    R. Liang, X. Dong, Y. Chen, F. Cao, Y. Wang, Effect of La2O3 doping on the tunable and dielectric properties of BST/MgO composite for microwave tunable application. Mater. Chem. Phys. 95(2), 222–228 (2006)Google Scholar
  71. 71.
    S. Hao, C. Wang, D. Fu, J. Zhang, Y. Wei, W. Wang, Preparation and characterization of La-doped Ba1–xSrxTiO3 powders and thin films. Thin Sold Film 518(20), 645–5648 (2010)Google Scholar
  72. 72.
    M. Cole, P. Joshi, M. Ervin, La doped (Ba1-xSrx)TiO3 thin films for tunable device application. J. Appl. Phys. 89, 6336–6340 (2001)Google Scholar
  73. 73.
    T. Ha, J. Kim, S. Kim, W. Kim, Enhanced tenability and electrical properties of Ba0.7Sr0.3TiO3 thin films by Cu-doping. Integrated Ferroelectrics 86(1), 77–84 (2006)Google Scholar
  74. 74.
    S. Yun, S. Koo, J. Ha, J. Koh, Influence of CuO addition to (Ba0.5, Sr0.5)TiO3 ceramics on sintering behavior and dielectric properties. Ferroelectrics 403(1), 19–25 (2010)Google Scholar
  75. 75.
    Y. Lee, Y. Huang, Effects of CuO doping on the microstructural and dielectric properties of Ba0.6Sr0.4TiO3 ceramics. J. Am. Cerem. Soc. 92(11), 2661–2667 (2009)Google Scholar
  76. 76.
    R. Laishram, K. Singh, C. Prakash, Enhanced dielectric loss of Mg doped Ba0.7Sr0.3TiO3 ceramics. Cerem. Integrated 42, 14970–14975 (2016)Google Scholar
  77. 77.
    Y. Huang, Y. Wu, W. Qiu, J. Li, X. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3-MgO composite prepared by spark plasma sintering. J. Eur. Cerem. Soc. 35, 1469–1476 (2015)Google Scholar
  78. 78.
    H. Liu, J. Zhu, Q. Chen, P. Yu, D. Xiao, Enhanced ferroelectric properties of Mg doped (Ba,Sr)TiO3 thick films grown on (001) SrTiO3 substrates. Thin Solid Film. 520(9), 3429–3432 (2012)Google Scholar
  79. 79.
    K. Yoon, J. Lee, D. Kang, C. Song, Y. Seo, Electrical properties of Mg doped (Ba0.5Sr0.5)TiO3 thin films. Jpn. J. Appl. Phys. 40(9B), 5497–5500 (2014)Google Scholar
  80. 80.
    M. Lim, H. Kim, N. Kim, H. Kim, I. Kim, S. Moon, M. Kwak, H. Ryu, S. Lee, frequency and voltage dependent dielectric properties of Ni-doped Ba0.6Sr0.4TiO3 thin films. J. Electr. 13, 239–243 (2004)Google Scholar
  81. 81.
    A. Kakumani, B. Ruthramurthy, H. Wong, Microstructure and dielectric properties of nickel-doped Ba0.7Sr0.3TiO3 ceramics fabricated by sol–gel method. Integrated J. Appl. Cerem. Technol. 13(1), 177–184 (2016)Google Scholar
  82. 82.
    S. Ding, X. Yang, X. Yao, The influence of Ni doping on the properties of BST ferroelectric thin film. Ferroelectrics 385(1), 135–140 (2009)Google Scholar
  83. 83.
    Y. Oh, E. Choi, S. Yoon, Microwave tunable properties of Ni-doped (BaSr)TiO3 thin films grown by pulsed laser deposition. Integrated Ferroelectrics 55(1), 877–885 (2003)Google Scholar
  84. 84.
    H. Seo, Y. Kim, G. Lucovsky, I. Kim, K. Chung, H. Kobayashi, D. Choi, Enhanced leakage current properties of Ni-doped Ba0.6Sr0.4TiO3 thin films driven by modified band edge state. J. Appl. Phys. 107, 24109–24116 (2010)Google Scholar
  85. 85.
    Y. Kim, J. Kim, D. Choi, J. Hong, I. Kim, Electrically stable low voltage operating ZnO thin film transistors with low leakage current Ni-doped Ba0.6Sr0.4TiO3 gate insulator. J. Elect. 23(1), 76–79 (2009)Google Scholar
  86. 86.
    X. Liao, H. Wang, X. Pan, J. Xiang, J. Zhang, Z. Tian, Surface structures and dielectric properties of yttrium-doped barium strontium titanate films by improved sol–gel method. J. Inorg. Mater. 24(2), 387–391 (2009)Google Scholar
  87. 87.
    J. Xu, H. Liu, B. He, H. Hao, Y. Li, M. Cao, Z. Yu, Dielectric properties of Y-doped Ba1–xSrxTiO3 ceramics. Opt. Appl. 40(1), 255–264 (2010)Google Scholar
  88. 88.
    S. Wang, B. Cheng, W. Can, H. Lu, Y. Zhou, Z. Chen, G. Yang, Dielectric properties of Co-doped Ba0.5Sr0.5TiO3 thin films fabricated by pulsed laser deposition. J. Cry. Gro. 259(1–2), 137–143 (2003)Google Scholar
  89. 89.
    L. Gao, J. Zhai, X. Yao, The influence of Co doping on the dielectric, ferroelectric and ferromagnetic properties of Ba0.7Sr0.3TiO3 thin films. Appl. Sur. Sci. 255(8), 4521–4525 (2009)Google Scholar
  90. 90.
    F. Stemme, M. Bruns, H. Geßwein, M. Schroeder, M. Sazegar, M. Drahus, R.A. Eichel, F. Paul, C. Azucena, J. Binder, Fabrication and characterization of iron and fluorine co-doped BST thin films for microwave applications. J. Mater. Sci. 48, 3586–3596 (2013)Google Scholar
  91. 91.
    W. Hu, C. Yang, X. Liu, W. He, X. Tang, Characterization of Sn-doped BST thin films on LaNiO3-coated Si substrate. J. Mater. Sci: Mater. Electr. 19, 61–66 (2008)Google Scholar
  92. 92.
    J.Y. Ha, L. Lin, D.Y. Jeong, S.J. Yoon, J.W. Choi, Improved figure of merit of (Ba, Sr)TiO3-based ceramics by Sn substitution. Jpn. J. Appl. Phys. 48(011402), 1–4 (2009)Google Scholar
  93. 93.
    I. Souza, A. Simoes, E. Longo, J. Varela, Synthesis of Ba0.5Sr0.5(Ti0.8Sn0.2)O3 prepared by the soft chemical method. Mater. Lett. 61, 4086–4089 (2007)Google Scholar
  94. 94.
    I. Souza, L. Cavalcante, J. Sczancoski, F. Moura, C. Paiva-Santos, J. Varela, A. Simoes, E. Longo, Structural and dielectric properties of Ba0.5Sr0.5(SnxTi1−x)O3 ceramics obtained by the soft chemical method. J. Alloy Comp. 477(1), 877–882 (2009)Google Scholar
  95. 95.
    I. Gong, J. Cheng, W. Zhu, S. Yu, W. Wu, Z. Meng, Improvement in dielectric and tunable properties of Fe doped Ba0.6Sr0.4TiO3 thin films grown by pulsed-laser deposition. IEEE. Trans. Ultrason. Ferric. 54(12), 2579–2582 (2007)Google Scholar
  96. 96.
    Y. Ye, T. Guo, Dielectric properties of Fe-doped Ba0.65Sr0.35TiO3 thin films fabricated by the sol–gel method. Ceramics Integrated 35, 761–2765 (2009)Google Scholar
  97. 97.
    Z. Guo, L. Pan, C. Bi, H. Qiu, X. Zhao, L. Yang, M. Yasir, Structural and multiferroic properties of Fe-doped Ba0.5Sr0.5TiO3 solids. J. Magnetism. Magnetic. Mater. 325, 24–28 (2013)Google Scholar
  98. 98.
    O. Nur, M. Willander, Q. Muhammad, F.G. Desouky, El Salem, A. Mohamed, A. Hamad, B. AIi, K. Inas, Effect of elevated concentrations of strontium and iron on the structural and dielectric characteristics of Ba(1–x–y)Sr(x)Ti Fe(y)O3 prepared through sol–gel technique. Phys. B: Phys. Conc. Mater. 407(14), 2697–2704 (2012)Google Scholar
  99. 99.
    M. Asad, N. Abdul, U. Asad, Mn-doped Ba0.45Sr0.55TiO3 ceramic systems dielectric and impedance spectroscopic characterization. Int. J. Appl. Cerem. Technol. 13(6), 1084–1089 (2016)Google Scholar
  100. 100.
    J. Cui, G. Dong, Z. Yang, J. Du, Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites. J. Alloy Comp. 490, 353–357 (2010)Google Scholar
  101. 101.
    X. Wang, S. Lv, C. Zhang, Q. Hu, L. Li, The structural and electrical properties of Mn-doped Ba0.6Sr0.4TiO3 films prepared by metal organic deposition method. J. Alloy Comp. 576, 262–264 (2013)Google Scholar
  102. 102.
    M. Kwak, Y. Kim, S. Moon, H. Ryu, S. Lee, K. Kang, Microwave properties of Mn Doped (Ba1-x,Srx)TiO3 thin films for tunable phase shifter. Integrated Ferroelectrics 66(1), 283–289 (2004)Google Scholar
  103. 103.
    C. Diao, H. Liu, H. Hao, M. Cao, Z. Yao, Enhanced recoverable energy storage density of Mn-doped Ba0.4Sr0.6TiO3 thin films prepared by spin-coating technique. J. Mater. Sci.: Mater. Electron. 29, 5814–5819 (2018)Google Scholar
  104. 104.
    Y. Fan, S. Yu, R. Sun, L. Li, Y. Yin, K. Wong, R. Du, Microstructure and electrical properties of Mn-doped barium strontium titanate thin films prepared on copper foils. Appl. Surf. Sci. 256, 6531–6535 (2010)Google Scholar
  105. 105.
    C. Ma, L. Shan, F. Wang, Dielectric properties for tantalum-doped strontium barium titanate thin films prepared by sol–gel method. Integrated Ferroelectrics 176(1), 220–227 (2016)Google Scholar
  106. 106.
    K. Kim, C. Kim, The effect of Cr doping on the microstructural and dielectric properties of (Ba0.6Sr0.4)TiO3 thin films. Thin Sol. Film 472, 26–30 (2005)Google Scholar
  107. 107.
    M. Hu, Y. Zhuo, S. Wang, Y. Tian, Study on dielectric and tunable properties of Cr-doped Ba0.6Sr0.4TiO3 thin films by RF sputtering. J. Mater. Sci. 43, 3162–3165 (2008)Google Scholar
  108. 108.
    Z. Potucek, Luminescence properties of BaSrTiO3 thin films deposited by RF hollow cathode plasma jet system. Ferroelectrics 335(1), 95–102 (2006)Google Scholar
  109. 109.
    C. Liang, J. Wu, Electrical properties of W-doped (Ba0.5Sr0.5)TiO3 thin films. J. Cry. Gro. 274, 173–177 (2005)Google Scholar
  110. 110.
    M. Zhang, J. Zhai, B. Shen, X. Yao, Microwave dielectric properties of low loss and highly tunable Ba0.5Sr0.5Ti1-3y/2WyO3 ceramics. J. Mater. Res. 27(6), 910–914 (2012)Google Scholar
  111. 111.
    K. Chong, L. Kong, L. Chen, L. Yan, C. Tan, T. Yang, C. Ong, T. Osipowicz, Improvement of dielectric loss tangent of Al2O3 doped Ba0.5Sr0.5TiO3 thin films for tunable microwave devices. J. Appl. Phys. 95(3), 1416–1419 (2004)Google Scholar
  112. 112.
    X. Zhang, X. Zuo, Y. Niu, H. Xiong, X. Zuo, Low temperature sintering and nonlinear dielectric properties of lithium-doped Ba0.6Sr0.4TiO3 thick films prepared by tape-casting. J. Mater. Sci.: Mater. Electron. 30, 3488 (2019)Google Scholar
  113. 113.
    L. Zhao, B. Zhang, P. Zhou, L. Zhu, J. Li, Effect of Li2O addition on sintering and piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 lead-free piezoceramics. J. Eur. Ceram. Soc. 35, 533–540 (2015)Google Scholar
  114. 114.
    M. Valant, D. Suvorov, R.C. Pullar, K. Sarma, N.M. Alford, A mechanism for low-temperature sintering. J. Eur. Ceram. Soc. 26(13), 2777–2783 (2006)Google Scholar
  115. 115.
    L. Song, Y. Chen, G. Wang, L. Yang, T. Li, F. Gao, X. Dong, Dielectric properties of La/Mn codoped Ba0.63Sr0.37TiO3 thin films prepared by RF magnetron sputtering. Ceramics Integrated 40, 12573–12577 (2014)Google Scholar
  116. 116.
    J. Huang, J. Liao, W. Zhang, S. Wang, H. Yang, M. Wu, Structures and dielectric properties of K and Mg alternately doped BST films. Integrated Ferroelectrics 162(1), 94–101 (2015)Google Scholar
  117. 117.
    A. Tkach, P. Vilarinho, A. Kholkin, Structure–microstructure–dielectric tunability relationship in Mn-doped strontium titanate ceramics. Act. Mater. 53, 5061–5069 (2005)Google Scholar
  118. 118.
    J. Liao, Z. Xu, X. Wei, B. Wei, P. Wang, B. Yang, Influence of preheating on crystallization and growing behavior of Ce and Mn doped Ba0.6Sr0.4TiO3 film by sol–gel method. Surf. Coal Technol. 206(22), 4518–4524 (2012)Google Scholar
  119. 119.
    J. Liao, P. Wang, X. Wei, B. Yang, Preparation and dielectric properties of cerium and manganese codoped Ba0.6Sr0.4TiO3 ferroelectric films. Integrated Ferroelectrics 144(1), 107–111 (2013)Google Scholar
  120. 120.
    J. Liao, S. Wang, X. Wei, Z. Xu, P. Wang, Improved mechanisms for excellent tunable microwave Ce and Mn codoped Ba0.6Sr0.4TiO3 thin films. Integrated Ferroelectrics 152(1), 104–112 (2014)Google Scholar
  121. 121.
    H. Kim, I. Kim, M. Lim, C. Lee, M. Kim, H. Kim, Characterization of Ni/Ce Co-doped BST thin film grown on LSCO/Pt electrodes prepared by pulsed laser deposition. Integrated Ferroelectrics 55, 923–931 (2003)Google Scholar
  122. 122.
    S. Chen, H. Wang, L. Huang, Electrical properties of Mg/La, Mg/Nb Co-Doped (Ba0.7Sr0.3)TiO3 thin films prepared by metallo-organic deposition method. Jpn. J. App. Phy. 40(8), 4974–4978 (2001)Google Scholar
  123. 123.
    Y. Zhang, G. Wang, Y. Chen, F. Cao, L. Yang, X. Dong, Effect of donor, acceptor, and donor-acceptor codoping on the electrical properties of Ba0.6Sr0.4TiO3 thin films for tunable device applications. J. Am. Ceram. Soc. 92(11), 2759–2761 (2009)Google Scholar
  124. 124.
    J. Oh, S. Delprat, M. Ismail, M. Chaker, E. Djoumessi, K. Wu, Improvement of Ba0.5Sr0.5TiO3 thin films microwave properties using doping with Mg–W and Al–W. Integrated Ferroelectrics 112, 24–32 (2010)Google Scholar
  125. 125.
    J. Saal, J. Andelm, W. Nothwang, M. Cole, The impact of acceptor dopant and oxygen vacancy defects on the lattice of barium strontium titanate. Integrated Ferroelectrics 101, 142–151 (2008)Google Scholar
  126. 126.
    S. Xu, Y. Qu, C. Zhang, Effect of Mg2+ content on the dielectric properties of Ba0.65-xSr0.35MgxTiO3 ceramics. J. Appl. Phys 106, 14107–14112 (2009)Google Scholar
  127. 127.
    W. Zhang, J. Liao, J. Huang, Influence of film thickness on dielectric properties of Y and Mn alternately doped BST films. Integrated Ferroelectrics 152, 97–103 (2014)Google Scholar
  128. 128.
    S. Wang, J. Liao, Y. Hu, F. Gong, Z. Xu, M. Wu, Structures and dielectric performances of Mn/Yalternately doped BST films prepared by a novel preheating process. Mater. Chem. Phy. 193, 50–56 (2017)Google Scholar
  129. 129.
    J. Liao, X. Wei, Z. Xu, X. Wei, P. Wang, The structure and dielectric properties of a novel kind of doped Ba0.6Sr0.4TiO3 film. Mater. Chle. Phys. 135, 1030–1035 (2012)Google Scholar
  130. 130.
    H. Qiang, Z. Xu, Low dielectric loss and enhanced tunable properties of donor–acceptor co-doped Ba0.67Sr0.33TiO3 ceramics. J. Mater. Sci. Mater. Elec. 27, 9976–9980 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesChengduPeople’s Republic of China
  2. 2.Collaboration Innovation Center of Electronic Materials and DevicesChengduPeople’s Republic of China
  3. 3.School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  4. 4.School of Materials and EnergyChengduPeople’s Republic of China

Personalised recommendations