Advertisement

Synthesis and characterizations of exohedral functionalized graphene oxide with iron nanoparticles for humidity detection

  • Kuldeep Kumar
  • Utkarsh Kumar
  • Monika Singh
  • B. C. YadavEmail author
Article
  • 98 Downloads

Abstract

This paper reports the characterizations and humidity sensing properties of Fe–GO. Thin films of GO and Fe–GO have been made by using the spin coating technique with 1500 rpm. After fabrication of thin film, variations in capacitance of the film with relative humidity (%RH) have been recorded. The thin film has been characterized by various techniques and a unique flower-like structure was found after the functionalization of GO with iron. The XRD analysis confirmed that the GO consists of a minimum of five layers of the graphene. BET surface analysis reveals that the synthesized Fe–GO is the mesoporous material partaking the surface area 45.23 m2/g together with a mean pore diameter of 32 nm. The sensitivity of the Fe–GO based sensor found as 14.12 pF/%RH for higher humidity (70–95%RH) region along with average sensitivity, response and recovery time as 5.18 pF/%RH, 31 s and 11 s respectively at room temperature.

Notes

Acknowledgements

Mr. Kuldeep Kumar is thankful to Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India for University Grant Commission (UGC) fellowship. Authors are highly acknowledged late Prof. Shyam Singh Chauhan, Pant Nagar University, UK, India for his fruitful suggestions.

References

  1. 1.
    C. Zhu, D. Du, Y. Lin, 2D Mater. 2, 032004 (2015)CrossRefGoogle Scholar
  2. 2.
    Q. Etienne et al., 2D Mater. 2, 030204 (2015)CrossRefGoogle Scholar
  3. 3.
    T. Palaniselvam, J.B. Baek, 2D Mater. 2, 032002 (2015)CrossRefGoogle Scholar
  4. 4.
    F. Qing, R. Jia, B.W. Li, C. Liu, C. Li, B. Pong, L. Deng, W. Zhang, Y. Li, R.S. Ruoff, X. Li, 2D Mater. 4, 025089 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Xuan, M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, Y. Xu, J.K. Luo, Sci. Rep. 4, 7206 (2014)CrossRefGoogle Scholar
  6. 6.
    D. Zhang, J. Tong, B. Xia, Q. Xue, Sens. Actuator B 203, 263–270 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Zhang, H. Chang, R. Liu, J. Electron. Mater. 45, 4275–4281 (2016)CrossRefGoogle Scholar
  8. 8.
    U. Kumar, B.C. Yadav, J. Tiwan Inst. Chem. Eng. 96, 652–663 (2019)CrossRefGoogle Scholar
  9. 9.
    P.G. Su, Z.M. Lu, Sens. Actuator B 211, 157–163 (2015)CrossRefGoogle Scholar
  10. 10.
    Q. Huang, D. Zeng, S. Tian, C. Xie, Mater. Lett. 83, 76–79 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Kumar, B.C. Yadav, ASEM 10, 1–4 (2018)Google Scholar
  12. 12.
    C.Y. Lee, G.B. Lee, Sens. Lett. 3, 1–15 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Nag, A. Mitra, S.C. Mukhopadhyay, Sens. Actuator A 270, 177–194 (2018)CrossRefGoogle Scholar
  14. 14.
    F. Tudorache, I. Petrila, T. Slatineanu, A.M. Dumitrescu, A.R. Iordan, M. Dobromir, M.N. Palamaru, J. Mater. Sci. Mater. Electron. 27, 272–278 (2016)CrossRefGoogle Scholar
  15. 15.
    A.E. Dessler, S.C. Sherwood, Science 323, 1020–1021 (2009)CrossRefGoogle Scholar
  16. 16.
    C.L. Zhao, M. Qin, W.H. Li, Q.A. Huang, in Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1954–1957Google Scholar
  17. 17.
    S.H. Song, H.H. Yang, C.H. Han, S.D. Ko, S.H. Lee, J.B. Yoon, Appl. Phys. Lett. 100, 101603 (2012)CrossRefGoogle Scholar
  18. 18.
    X. Wang, B. Ding, J. Yu, M. Wang, F. Pan, Nanotechnology 21, 055502 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Yao, X.D. Chen, H.H. Guo, Z.Q. Wu, Appl. Surf. Sci. 257, 7778–7782 (2011)CrossRefGoogle Scholar
  20. 20.
    M.M. Hawkeye, M.J. Brett, Adv. Funct. Mater. 21, 3652–3658 (2011)CrossRefGoogle Scholar
  21. 21.
    S.M. Balashov, O.V. Balachova, A.P. Filho, M.C.Q. Bazetto, M.G. de Almeida, ECS Trans. 49, 445–450 (2012)CrossRefGoogle Scholar
  22. 22.
    R. Fenner, E. Zdankiewicz, IEEE Sens. J. 1, 309–317 (2001)CrossRefGoogle Scholar
  23. 23.
    J. Chu, X.Y. Peng, P. Feng, Y. Sheng, J.T. Zhang, Sens. Actuator B 178, 508–513 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Sci. Rep. 3(2714), 1–4 (2013)Google Scholar
  25. 25.
    U. Kumar, B.C. Yadav, Sens. Actuator B 288, 399–407 (2019)CrossRefGoogle Scholar
  26. 26.
    D.Z. Zhang, J. Tong, B. Xia, Sens. Actuator B 197, 66–72 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Chen, Y. Wang, H.B. Zhang, X. Li, C.X. Gui, Z.Z. Yu, Carbon 82, 67–76 (2015)CrossRefGoogle Scholar
  28. 28.
    X. He, Carbon 82, 229–237 (2015)CrossRefGoogle Scholar
  29. 29.
    R.F. Albers, R.A. Bini, J.B. Souza Jr., D.T. Machado, L.C. Varanda, Carbon 143, 73–84 (2019)CrossRefGoogle Scholar
  30. 30.
    C. Chen, X. Wang, M. Li, Y. Fan, R. Sun, Sens. Actuator B 255, 1569–1576 (2018)CrossRefGoogle Scholar
  31. 31.
    R.K. Mishra, S.B. Upadhyay, A. Kushwaha, T.H. Kim, G. Murali, R. Verma, M. Srivastava, J. Singh, P.P. Sahay, S.H. Lee, Nanoscale 7, 11971–11979 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Paulchamy, G. Arthi, B.D. Lignesh, J. Nanomed. Nanotechnol. 6, 1–4 (2015)Google Scholar
  33. 33.
    M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, Mod. Electron. Mater. 3, 110–116 (2017)CrossRefGoogle Scholar
  34. 34.
    D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Sens. Actuator B 225, 233–240 (2016)CrossRefGoogle Scholar
  35. 35.
    M.Y. Wang, T. Shen, M. Wang, D.E. Zhang, Z. Tong, J. Chen, Sens. Actuator B 190, 645–650 (2014)CrossRefGoogle Scholar
  36. 36.
    R. Sharma, N. Chadha, P. Saini, Indian J. Pure Appl. Phys. 55, 625–629 (2017)Google Scholar
  37. 37.
    Z. Movasaghi, S. Rehman, I.U. Rehman, Appl. Spectrosc. Rev. 43, 134–179 (2008)CrossRefGoogle Scholar
  38. 38.
    A.C.S. Talari, M.A.G. Martinez, Z. Movasaghi, S. Rehman, I.U. Rehman, Appl. Spectrosc. Rev. 52(5), 456–506 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Khelifi, F. Ayari, D.B. Hassan Chehimi, M. Trabelsi-Ayadi, J. Chem. Eng. Process Technol. 7(5), 1–9 (2016)Google Scholar
  40. 40.
    M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Nano Lett. 10, 751–758 (2010)CrossRefGoogle Scholar
  41. 41.
    S. Claramunt, A. Varea, D. López-Díaz, M.M. Velázquez, A. Cornet, A. Cirera, J. Phys. Chem. C 119, 10123–10129 (2015)CrossRefGoogle Scholar
  42. 42.
    A.A.K. King, B.R. Davies, N. Noorbehesht, P. Newman, T.L. Church, A.T. Harris, J.M. Razal, A.I. Minett, Sci. Rep. 6, 19491 (2016)CrossRefGoogle Scholar
  43. 43.
    J.B. McManus, A. Hennessy, C.P. Cullen, T. Hallam, N. McEvoy, G.S. Duesberg, Phys. Status Solidi B 254, 1700214 (2017)CrossRefGoogle Scholar
  44. 44.
    I. Chourpa, E.L. Douziech, O.L. Ngaboni, J.F. Fouquent, J.S. Cohen, M. Souce, H. Marchais, P. Dubois, Analyst 130, 1395–1403 (2005)CrossRefGoogle Scholar
  45. 45.
    C.L. Zhao, M. Qin, Q.A. Huang, IEEE Sens. J. 11(11), 2986–2992 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kuldeep Kumar
    • 1
  • Utkarsh Kumar
    • 1
  • Monika Singh
    • 1
  • B. C. Yadav
    • 1
    Email author
  1. 1.Nanomaterials and Sensors Research Laboratory, Department of PhysicsBabasaheb Bhimrao Ambedkar UniversityLucknowIndia

Personalised recommendations