Advertisement

Influence of base pressure on property of sputtering deposited ITO film

  • Shumin Yang
  • Jingming Zhong
  • Benshuang Sun
  • Xueyun Zeng
  • Wen Luo
  • Xu Zhao
  • Yongchun ShuEmail author
  • Jie Chen
  • Jilin He
Article

Abstract

To systematically investigate the effect of base pressure on photoelectric properties of indium tin oxide (ITO) films, ITO films were prepared on glass substrates by RF magnetron sputtering with base pressures varying from 0.42 × 10−6 to 10 × 10−6 Torr in this work. Microstructure and photoelectric properties of ITO films were characterized by atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Hall-effect measurements and UV–vis transmission spectroscopy. It concluded that base pressure has an important influence on the properties of sputtering ITO films. As base pressure decreased, In2O3 was more easily decomposed into free oxygen and In2O3−x, the adhesion coefficient of oxygen reduced, and the oxygen vacancy content in ITO films increased. Therefore, with the decrease of the base pressure, the carrier concentration of ITO films increased, the resistivity of ITO films decreased, and the figure of merit of ITO films improved.

Notes

References

  1. 1.
    M. Boehme, C. Charton, Properties of ITO on PET film in dependence on the coating conditions and thermal processing. Surf. Coat. Technol. 200, 932–935 (2005)CrossRefGoogle Scholar
  2. 2.
    A.P. Amalathas, M.M. Alkaisi, Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen. J. Mater. Sci. Mater. Electron. 27, 11064–11071 (2016)CrossRefGoogle Scholar
  3. 3.
    M.-J. Kim, P.-K. Song, High crystallization of ultra-thin indium tin oxide films prepared by direct current magnetron sputtering with post-annealing. Sci. Adv. Mater. 8, 622–626 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Wen, H. Liu, S. Yang, L. Fan, Transparent and conductive indium tin oxide/polyimide films prepared by high-temperature radio-frequency magnetron sputtering. J. Appl. Polym. Sci. (2015).  https://doi.org/10.1002/app.42753 Google Scholar
  5. 5.
    M. Huang, Z. Hameiri, A.G. Aberle, T. Mueller, Comparative study of amorphous indium tin oxide prepared by pulsed-DC and unbalanced RF magnetron sputtering at low power and low temperature conditions for heterojunction silicon wafer solar cell applications. Vacuum 119, 68–76 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Sytchkova, D. Zola, L.R. Bailey, B. Mackenzie, G. Proudfoot, M. Tian, A. Ulyashin, Depth dependent properties of ITO thin films grown by pulsed DC sputtering. Mater. Sci. Eng. B 178, 586–592 (2013)CrossRefGoogle Scholar
  7. 7.
    Y.-M. Kong, M.-K. Kim, D. Kim, Effect of substrate temperature on the properties of ITO/TiO2 bi-layered films deposited by RF magnetron sputtering. Korean J. Met. Mater. 52, 233–236 (2014)CrossRefGoogle Scholar
  8. 8.
    D. Kudryashov, A. Gudovskikh, K. Zelentsov, Low temperature growth of ITO transparent conductive oxide layers in oxygen-free environment by RF magnetron sputtering. J. Phys. Conf. Ser. 461, 012021 (2013)CrossRefGoogle Scholar
  9. 9.
    X. Wang, G.M. Ng, J.W. Ho et al., Efficient semitransparent bulk-heterojunction organic photovoltaic cells with high-performance low processing temperature indium–tin oxide top electrode. IEEE J. Sel. Top. Quantum Electron. 16, 1685–1689 (2010)CrossRefGoogle Scholar
  10. 10.
    K. Aijo John, V.V. Kumar, M. Deepak, T. Manju, Influence of sputtering power on the optical properties of ITO thin films. AIP Conf. Proc. 1620, 22–27 (2014)CrossRefGoogle Scholar
  11. 11.
    K. Aijo John, R.R. Philip, P. Sajan, T. Manju, In situ crystallization of highly conducting and transparent ITO thin films deposited by RF magnetron sputtering. Vacuum 132, 91–94 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Kosarian, M. Shakiba, E. Farshidi, Role of sputtering power on the microstructure and electro-optical properties of ITO thin films deposited using DC sputtering technique. IEEJ Trans. Electr. Electron. Eng. 13, 27–31 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.-S. Kim, Y.-C. Park, S.G. Ansari, J.-Y. Lee, B.-S. Lee, H.-S. Shin, Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering. Surf. Coat. Technol. 173, 299–308 (2003)CrossRefGoogle Scholar
  14. 14.
    A.M. Gheidari, F. Behafarid, G. Kavei, M. Kazemzad, Effect of sputtering pressure and annealing temperature on the properties of indium tin oxide thin films. Mater. Sci. Eng. B 136, 37–40 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Najwa, A. Shuhaimi, N. Ameera, K.M. Hakim, M. Sobri, M. Mazwan, M.H. Mamat, Y. Yusnizam, V. Ganesh, M. Rusop, The effect of sputtering pressure on structural, optical and electrical properties of indium tin oxide nanocolumns prepared by radio frequency (RF) magnetron sputtering. Superlattices Microstruct. 72, 140–147 (2014)CrossRefGoogle Scholar
  16. 16.
    S. Özen, V. Şenay, S. Pat, Ş. Korkmaz, Investigation of the surface free energy of the ITO thin films deposited under different working pressure. AIP Conf. Proc. 1722, 290010 (2016)CrossRefGoogle Scholar
  17. 17.
    Z. Ghorannevis, E. Akbarnejad, A. Salar Elahi, M. Ghoranneviss, RETRACTED: application of RF magnetron sputtering for growth of AZO on glass substrate. J. Cryst. Growth 447, 62–66 (2016)CrossRefGoogle Scholar
  18. 18.
    H.-N. Cui, V. Teixeira, L.-J. Meng, R. Martins, E. Fortunato, Influence of oxygen/argon pressure ratio on the morphology, optical and electrical properties of ITO thin films deposited at room temperature. Vacuum 82, 1507–1511 (2008)CrossRefGoogle Scholar
  19. 19.
    S.-H. Yang, D.-M. Lee, J.-K. Kim, J.-W. Kang, J.-M. Lee, Enhanced optical and electrical properties of ITO on a PET substrate by hydrogen plasma and HCl treatment. J. Phys. D 46, 125103 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Chen, K. Zhu, H. Zhong, Q. Shao, G. Ge, A new investigation of oxygen flow influence on ITO thin films by magnetron sputtering. Sol. Energy Mater. Sol. Cells 120, 157–162 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Álvarez-Fraga, F. Jiménez-Villacorta, J. Sánchez-Marcos, A. de Andrés, C. Prieto, Indium–tin oxide thin films deposited at room temperature on glass and PET substrates: optical and electrical properties variation with the H2–Ar sputtering gas mixture. Appl. Surf. Sci. 344, 217–222 (2015)CrossRefGoogle Scholar
  22. 22.
    J.-H. Lee, Effects of substrate temperature on electrical and optical properties ITO films deposited by R.F. magnetron sputtering. J. Electroceram. 23, 554–558 (2008)CrossRefGoogle Scholar
  23. 23.
    N. Boonyopakorn, N. Sripongpun, C. Thanachayanont, S. Dangtip, Effects of substrate temperature and vacuum annealing on properties of ITO films prepared by radio-frequency magnetron sputtering. Chin. Phys. Lett. 27, 108103 (2010)CrossRefGoogle Scholar
  24. 24.
    J. Xu, Z. Yang, H. Wang, H. Xu, X. Zhang, Effect of growth temperature and coating cycles on structural, electrical, optical properties and stability of ITO films deposited by magnetron sputtering. Mater. Sci. Semicond. Process. 21, 104–110 (2014)CrossRefGoogle Scholar
  25. 25.
    S.-N. Li, R.-X. Ma, C.-H. Ma, Y.-Q. Xiao, D.-R. Li, L.-W. He, H.-M. Zhu, Bias voltage dependence properties of Nb-doped indium tin oxide thin films by RF magnetron sputtering at room temperature. Mater. Sci. Semicond. Process. 17, 216–221 (2014)CrossRefGoogle Scholar
  26. 26.
    B.H. Lee, I.G. Kim, S.W. Cho, S.H. Lee, Effect of process parameters on the characteristics of indium tin oxide thin film for flat panel display application. Thin Solid Films 302, 25–30 (1997)CrossRefGoogle Scholar
  27. 27.
    A.I. Rogozin, M.V. Vinnichenko, A. Kolitsch, W. Möller, Effect of deposition parameters on properties of ITO films prepared by reactive middle frequency pulsed dual magnetron sputtering. J. Vac. Sci. Technol. A 22, 349–355 (2004)CrossRefGoogle Scholar
  28. 28.
    C. Guillén, J. Herrero, Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen. J. Appl. Phys. 101, 073514–073517 (2007)CrossRefGoogle Scholar
  29. 29.
    K. Zhang, F. Zhu, C.H.A. Huan et al., Effect of hydrogen partial pressure on optoelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method. J. Appl. Phys. 86, 974–980 (1999)CrossRefGoogle Scholar
  30. 30.
    K. Zhang, F. Zhu, C.H.A. Huan et al., Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature. Thin Solid Films 376, 255–263 (2000)CrossRefGoogle Scholar
  31. 31.
    S. Luo, S. Kohiki, K. Okada, F. Shoji, T. Shishido, Hydrogen effects on crystallinity, photoluminescence, and magnetization of indium tin oxide thin films sputter-deposited on glass substrate without heat treatment. Phys. Status Solidi A 207, 386–390 (2010)CrossRefGoogle Scholar
  32. 32.
    S.I. Jun, T.E. McKnight, M.L. Simpson, P.D. Rack, A statistical parameter study of indium tin oxide thin films deposited by radio-frequency sputtering. Thin Solid Films 476, 59–64 (2005)CrossRefGoogle Scholar
  33. 33.
    G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086–4089 (1976)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shumin Yang
    • 1
    • 3
  • Jingming Zhong
    • 4
  • Benshuang Sun
    • 2
  • Xueyun Zeng
    • 2
  • Wen Luo
    • 4
  • Xu Zhao
    • 2
  • Yongchun Shu
    • 2
    Email author
  • Jie Chen
    • 2
  • Jilin He
    • 2
  1. 1.School of Physical ScienceNankai UniversityTianjinChina
  2. 2.Henan Province Industrial Technology Research Institute of Resources and MaterialsZhengzhou UniversityZhengzhouChina
  3. 3.School of Physics and Electrical EngineeringKashi UniversityKashiChina
  4. 4.State Key Laboratory of Special Rare Metal MaterialsNorthwest Rare Metal Materials Research Institute Ningxia Co., Ltd.ShizuishanChina

Personalised recommendations