Advertisement

Investigation of superconducting and elastic parameters of YBCO/LSMO thick films

  • Bibekananda Sahoo
  • Dhrubananda BeheraEmail author
Article
  • 92 Downloads

Abstract

The variations of superconducting and mechanical properties of La0.67Sr0.33MnO3 (LSMO) [x = 0.0, 0.1, and 0.2] doped YBa2Cu3O7−δ (YBCO) composite thick films were examined. All the composite films were synthesized by diffusion reaction technique. The structural and morphological analysis were investigated through X-ray powder diffraction along with Rietveld refinement and Field emission scanning electron microscopy (FESEM) respectively. The transport measurement suggested that the inclusion of ferromagnetic LSMO decreases the superconducting transition temperature (\( T_{C}^{on} \)) and enhances the residual resistivity (ρ0). The broadening of resistive transition occurs below the onset transition temperature and shows the dissipative flux pinning. Various superconducting parameters were obtained from the excess conductivity analysis of the composite films and were in good agreement with the experimental findings. The mechanical strength of all the composite films was explained through different models like Hays–Kendall model, Elastic/Plastic deformation model and Proportional specimen resistance model.

Notes

Acknowledgements

The author (B. Sahoo) is thankful to DST INSPIRE for providing the financial support to carry out this performance. The authors thank Dr. Anil K. Singh of National Institute of Technology, Rourkela for providing the oxygen annealing facility for the preparation of the sample. I would like to thank S. S Nayak and Manoj Kishor Pradhan for their support and fruitful discussion during the work.

References

  1. 1.
    M.K. Wu, J.R. Ashburn, C. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, A. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908 (1987)CrossRefGoogle Scholar
  2. 2.
    S. Acharya, A.K. Biswal, J. Ray, P.N. Vishwakarma, Study of Bi2Sr2CaCu2O8/BiFeO3 nano-composite for electrical transport applications. J. Appl. Phys. 112, 053916 (2012)CrossRefGoogle Scholar
  3. 3.
    S.S. Saxena, P. Agarwal, K. Ahilan, F.M. Grosche, R.K. Haselwimmer, M.J. Steiner, E. Pugh, I.R. Walker, S.R. Julian, P. Monthoux, G.G. Lonzarich, Superconductivity on the border of itinerant-electron ferromagnetism in UGe2. Nature 406(6796), 587 (2000)CrossRefGoogle Scholar
  4. 4.
    T.G. Holesinger, L. Civale, B. Maiorov, D.M. Feldmann, J.Y. Coulter, J. Miller, V.A. Maroni, Z.J. Chen, D.C. Larbalestier, R. Feenstra, X.P. Li, M.B. Huang, T. Kodenkandath, W. Zhang, M.W. Rupich, A.P. Malozemoff, Progress in nano-engineered microstructures for tunable high-current, high-temperature superconducting wires. Adv. Mater. 20, 391 (2008)CrossRefGoogle Scholar
  5. 5.
    S. Engel, T. Thersleff, R. Huhne, L. Schultz, B. Holzapfel, Enhanced flux pinning inYBa2Cu3O7 layers by the formation of nano-sized BaHfO3 precipitates using the chemical deposition method. Appl. Phys. Lett. 90, 102505 (2007)CrossRefGoogle Scholar
  6. 6.
    J. Gutiérrez, A. Llordés, J. Gazquez, M. Gibert, N. Romá, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, X. Obradors, Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat. Mater. 6, 367 (2007)CrossRefGoogle Scholar
  7. 7.
    B. Sahoo, K.L. Routray, B. Panda, D. Samal, D. Behera, Excess conductivity and magnetization of CoFe2O4 combined with YBa2Cu3O7−δ as a superconductor. J. Phys. Chem. Solids 132, 187–196 (2019)CrossRefGoogle Scholar
  8. 8.
    X. Tang, Y. Zhao, W. Wu, N.H. Andersen, J.C. Grivel, High-Jc YBa2Cu3O7−x-Ag superconducting thin films synthesized through a fluorine-free MOD method. J. Eur. Ceram. Soc. 35(6), 1761–1769 (2015)CrossRefGoogle Scholar
  9. 9.
    M.M. Elokret, R. Awad, A.A. El-Ghany, A.A. Shama, A. El-wanis, Effects of nano-sized ZnO on the physical properties of effect of nano-sized ZnO on the physical properties of (Cu0.5Tl0.25Pb0.25) Ba2Ca2Cu3O10_δ. J. Supercond. Nov. Magn. 24, 1345 (2011)CrossRefGoogle Scholar
  10. 10.
    A.K. Jha, N. Khare, Khare, Strongly enhanced pinning force density in YBCO–BaTiO3 nanocomposite superconductor. Physica C 469, 810 (2009)CrossRefGoogle Scholar
  11. 11.
    A.I. Buzdin, Proximity effects in superconductor-Ferromagnet heterostructures. Rev. Mod. Phys. 77, 935 (2005)CrossRefGoogle Scholar
  12. 12.
    F.S. Bergeret, A.F. Volkov, K.B. Efetov, Odd triplet superconductivity and related phenomena in superconductor-Ferromagnet structures. Rev. Mod. Phys. 77, 1321 (2005)CrossRefGoogle Scholar
  13. 13.
    W. Gillijns, A.Y. Aladyshkin, M. Lange, M.J. Van Bael, V.V. Moshchalkov, Domain-wall guided nucleation of superconductivity in hybrid ferromagnet-superconductor-ferromagnet layered structures. Phys. Rev. Lett. 95(22), 227003 (2005)CrossRefGoogle Scholar
  14. 14.
    D. Stamopoulos, M. Pissas, E. Manios, Ferromagnetic-superconducting hybrid films and their possible applications: a direct study in a model combinatorial film. Phys. Rev. B 71(1), 014522 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Gillijns, A.Y. Aladyshkin, A.V. Silhanek, V.V. Moshchalkov, Magnetic confinement of the superconducting condensate in superconductor-ferromagnet hybrid composites. Phys. Rev. B 76(6), 060503 (2007)CrossRefGoogle Scholar
  16. 16.
    D. Stamopoulos, E. Manios, M. Pissas, Synergy of exchange bias with superconductivity in ferromagnetic–superconducting layered hybrids: the influence of in-plane and out-of-plane magnetic order on superconductivity. Supercond. Sci. Technol. 20(12), 1205 (2007)CrossRefGoogle Scholar
  17. 17.
    A.Y. Aladyshkin, A.V. Silhanek, W. Gillijns, V.V. Moshchalkov, Nucleation of superconductivity and vortex matter in superconductor–ferromagnet hybrids. Supercond. Sci. Technol. 22(5), 053001 (2009)CrossRefGoogle Scholar
  18. 18.
    C.J. Kim, N. Quadir, A. Mahmood, Y.H. Han, T.H. Sung, The effect of BaCeO3 nanoparticles on the current density of a melt-processed YBCO superconductor. Physica C 463–465, 344 (2007)CrossRefGoogle Scholar
  19. 19.
    M.N. Hasan, M. Kiuchi, E.S. Otabe, T. Matsushita, M. Muralidhar, Flux pinning properties of (Nd, Eu, Gd) Ba2Cu3Oy (NEG-123) superconductor with 211 phase particles. Supercond. Sci. Technol. 20, 345 (2007)CrossRefGoogle Scholar
  20. 20.
    S. Nariki, N. Sakai, M. Murakami, I. Hirabashi, Effect of RE2BaCuO5 refinement on the critical current density and trapped field of melt-textured (Gd, Y)–Ba–Cu–O bulk superconductors. Physica C 439, 62 (2006)CrossRefGoogle Scholar
  21. 21.
    B. Sahoo, K.L. Routray, D. Samal, D. Behera, Effect of artificial pinning centers on YBCO high temperature superconductor through substitution of graphene nano-platelets. Mater. Chem. Phys. 223, 784–788 (2019)CrossRefGoogle Scholar
  22. 22.
    G. Yildirim, Beginning point of metal to insulator transition for Bi-2223 superconducting matrix doped with Eu nanoparticles. J. Alloys Compd. 578, 526–535 (2013)CrossRefGoogle Scholar
  23. 23.
    N.A. Khan, S. Aziz, Single and multi-walled carbon nanotubes doped (Cu0.5Tl0.5) Ba2Ca2Cu3O10−δ superconductors. J. Alloys Compd. 538, 183–188 (2012)CrossRefGoogle Scholar
  24. 24.
    N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, Mechanical properties of (Cu0.5Tl0.5)-1223 added by nano-SnO2. J. Alloys Compd. 486(1–2), 733–737 (2009)CrossRefGoogle Scholar
  25. 25.
    N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, Effect of nano-oxides addition on the mechanical properties of (Cu0.5Tl0.5)-1223 phase. J. Supercond. Novel Magn. 24(5), 1463–1472 (2011)CrossRefGoogle Scholar
  26. 26.
    N.H. Mohammed, A.I. Abou-Aly, R. Awad, I.H. Ibrahim, M. Roumie, M. Rekaby, Mechanical and electrical properties of (Cu0.5Tl0.5)-1223 phase added with nano-Fe2O3. J. Low-Temp. Phys. 172(3–4), 234–255 (2013)CrossRefGoogle Scholar
  27. 27.
    N.A. Hamid, M.Y.A. Rahman, N.F. Shamsuddin, Mechanical and superconducting properties of nanosize MgO added dip-coated Bi2Sr2CaCu2O8 superconducting tape. Nat. Sci. 3(6), 484–487 (2011)Google Scholar
  28. 28.
    M. Saleem, D. Varshney, Structural, thermal, and transport properties of La0.67 Sr0.33MnO3 nanoparticles synthesized via the sol–gel auto-combustion technique. RSC Adv. 8(3), 1600–1609 (2018)CrossRefGoogle Scholar
  29. 29.
    Y. Feng, A.K. Pradhan, Y. Zhao, Y. Wu, N. Koshizuka, L. Zhou, Improved flux pinning in YxHo1-xBa2Cu3Oy fabricated by powder melting process. Supercond. Sci. Technol. 14, 224 (2001)CrossRefGoogle Scholar
  30. 30.
    A. Kujur, K. Asokan, D. Behera, Critical current density enhancement by ion irradiation for thick YBa2Cu3O7−δ films prepared by diffusion reaction technique. Nucl. Instrum. Methods Phys. Res. B 343, 94 (2015)CrossRefGoogle Scholar
  31. 31.
    S. Dadras, Y. Liu, Y.S. Chai, V. Daadmehr, K.H. Kim, Increase of critical current density with doping carbon nano-tubes in YBa2Cu3O7−δ. Physica C 469(1), 55–59 (2009)CrossRefGoogle Scholar
  32. 32.
    R.F. Klie, J.P. Buban, M. Varela, A. Franceschetti, C. Jooss, Y. Zhu, N.D. Browning, S.T. Pantelides, S.J. Pennycook, Enhanced current transport at grain boundaries in high-T c superconductors. Nature 435(7041), 475 (2005)CrossRefGoogle Scholar
  33. 33.
    T.T.M. Palstra, B. Batlogg, R.B. Van Dover, L.F. Schneemeyer, J.V. Waszczak, Dissipative flux motion in high-temperature superconductors. Phys. Rev. B 41, 6621 (1990)CrossRefGoogle Scholar
  34. 34.
    Y. Zhao, P. Torres, X. Tang, P. Norby, J.C. Grivel, Growth of highly epitaxial YBa2Cu3O7−δ films from a simple propionate-based solution. Inorg. Chem. 54(21), 10232–10238 (2015)CrossRefGoogle Scholar
  35. 35.
    G. Balestrino, M. Marinelli, E. Milani, L. Reggiani, R. Vaglio, A.A. Varlamov, Excess conductivity in 2: 2: 1: 2-phase Bi-Sr-Ca-Cu-O epitaxial thin films. Phys. Rev. B 46(22), 14919 (1992)CrossRefGoogle Scholar
  36. 36.
    W. Lang, G. Heine, W. Kula, R. Sobolewski, Superconducting fluctuations in Bi2Sr2Ca2Cu3Ox thin films: paraconductivity, excess Hall effect, and magneto conductivity. Phys. Rev. B 51(14), 9180 (1995)CrossRefGoogle Scholar
  37. 37.
    N.A. Khan, N. Hassan, S. Nawaz, B. Shabbir, S. Khan, A.A. Rizvi, Effect of Sn substitution on the para-conductivity of polycrystalline Cu0.5Tl0.5Ba2Ca2Cu3−ySnyO10−δ superconductors. J. Appl. Phys. 107(8), 083910 (2010)CrossRefGoogle Scholar
  38. 38.
    S. Acharya, A.K. Biswal, J. Ray, P.N. Vishwakarma, Study of Bi2Sr2CaCu2O8/BiFeO3 nano-composite for electrical transport applications. J. Appl. Phys. 112(5), 053916 (2012)CrossRefGoogle Scholar
  39. 39.
    R. Seta, R. Botet, H. Kuratsuji, Excess conductivity in high-Tc superconducting thin films: role of smooth doping disorder. Phys. Rev. B 73(1), 012508 (2006)CrossRefGoogle Scholar
  40. 40.
    M.P. Rojas Sarmiento, M.A. Uribe Laverde, E. Vera Lopez, D.A. Landineza, J. Roa-Rojas, Conductivity fluctuation and superconducting parameters of the YBa2Cu3−x(PO4)xO7−δ material. Phys. B 398, 360 (2007)CrossRefGoogle Scholar
  41. 41.
    A. Leenders, M. Mich, H.C. Freyhard, Influence of thermal cycling on the mechanical properties of VGF melt-textured YBCO. Physica C 279(3–4), 173–180 (1997)CrossRefGoogle Scholar
  42. 42.
    U. Kölemen, Analysis of ISE in microhardness measurements of bulk MgB2 superconductors using different models. J. Alloys Compd. 425(1–2), 429–435 (2006)CrossRefGoogle Scholar
  43. 43.
    R. Awad, A.A. Aly, M. Kamal, M. Anas, Mechanical properties of (Cu0.5Tl0.5)-1223 substituted by Pr. J. Supercond. Novel Magn. 24(6), 1947–1956 (2011)CrossRefGoogle Scholar
  44. 44.
    C.E. Foerster, E. Lima, P. Rodrigues Jr., F.C. Serbena, C.M. Lepienski, M.P. Cantão, A.R. Jurelo, X. Obradors, Mechanical properties of Ag-doped top-seeded melt-grown YBCO pellets. Braz. J. Phys. 38(3A), 341–345 (2008)CrossRefGoogle Scholar
  45. 45.
    K. Sangwal, B. Surowska, Study of indentation size effect and microhardness of SrLaAlO4 and SrLaGaO4 single crystals. Mater. Res. Innov. 7(2), 91–104 (2003)CrossRefGoogle Scholar
  46. 46.
    C. Hays, E.G. Kendall, An analysis of Knoop microhardness. Metallography 6(4), 275–282 (1973)CrossRefGoogle Scholar
  47. 47.
    V.S. Bobrov, Deformation, structure and properties of ceramics and crystals of high-Tc superconductors. Mater. Sci. Eng. A 164(1–2), 146–152 (1993)CrossRefGoogle Scholar
  48. 48.
    H. Li, R.C. Bradt, The microhardness indentation load/size effect in rutile and cassiterite single crystals. J. Mater. Sci. 28(4), 917–926 (1993)CrossRefGoogle Scholar
  49. 49.
    H.A. Cetinkara, M. Yilmazlar, O. Ozturk, M. Nursoym, C. Terzioglu, The influence of cooling rates on microstructure and mechanical properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductors. J. Phys. 153, 012038 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and AstronomyNational Institute of TechnologyRourkelaIndia

Personalised recommendations