Skip to main content
Log in

Photoconductive properties of polycrystalline selenium based lateral MISIM photodetectors of high quantum efficiency using different dielectrics as the charge blocking layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We studied the photoconductive performance of polycrystalline selenium (pc-Se) based photodetectors with a lateral metal–insulator-semiconductor-insulator–metal (MISIM) device structure. The insulator layer is a 10 nm-thick Ga2O3, HfO2, or Al2O3 thin film, and used as a charge blocking layer (CBL) to suppress dark current injected from the Al electrodes. The dark current suppression primarily depends on the barrier height of the junctions between the CBLs and electrodes. The Ga2O3 CBL exhibits a poor dark current suppression compared to the HfO2 and the Al2O3 CBLs because of a lower electron barrier at the cathode. The lateral pc-Se photodetectors exhibit a very high internal photocurrent gain due to Fowler–Nordheim tunneling at relatively low applied voltages. The better crystallinity of pc-Se grains formed on the Ga2O3 CBL leads to a higher photoconversion efficiency for the MISIM-Ga2O3 photodetector. Compared with amorphous Se based lateral MISIM photodetectors, the pc-Se photodetectors demonstrate a uniform and much better photoconductive performance over the visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.D. Park, K. Tanioka, Jpn. J. Appl. Phys. 48, 04C159 (2009)

    Google Scholar 

  2. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)

    Article  Google Scholar 

  3. C.Y. Chang, F.M. Pan, J.S. Lin, T.Y. Yu, Y.M. Li, C.Y. Chen, J. Appl. Phys. 120, 234501 (2016)

    Article  Google Scholar 

  4. T.Y. Yu, F.M. Pan, C.Y. Chang, J.S. Lin, W.H. Huang, J. Appl. Phys. 118, 44509 (2015)

    Article  Google Scholar 

  5. S.O. Kasap, J.A. Rowlands, J. Mater. Sci. 11, 179 (2000)

    Google Scholar 

  6. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Phys. Status Solidi 246, 1794 (2009)

    Article  Google Scholar 

  7. S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, T. Nakada, T. Okino, Y. Hirose, Y. Kato, N. Teranishi, in 2014 IEEE International Electron Devices Meeting (IEEE, San Francisco, 2014), pp. 4.3.1–4.3.4

  8. J.R. Scheuermann, Y. Miranda, H. Liu, W. Zhao, J. Appl. Phys. 119, 24508 (2016)

    Article  Google Scholar 

  9. K. Hu, H. Chen, M. Jiang, F. Teng, L. Zheng, X. Fang, Adv. Funct. Mater. 26, 6641 (2016)

    Article  Google Scholar 

  10. L.B. Luo, X.B. Yang, F.X. Liang, J.S. Jie, Q. Li, Z.F. Zhu, C.Y. Wu, Y.Q. Yu, L. Wang, CrystEngComm 14, 1942 (2012)

    Article  Google Scholar 

  11. S. Imura, K. Kikuchi, K. Miyakawa, M. Kubota, Can. J. Phys. 92, 645 (2014)

    Article  Google Scholar 

  12. S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, J. Phys: Conf. Ser. 619, 12008 (2015)

    Google Scholar 

  13. S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, Appl. Phys. Lett. 104, 242101 (2014)

    Article  Google Scholar 

  14. S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, T. Okino, Y. Hirose, Y. Kato, N. Teranishi, in 2015 IEEE International Electron Devices Meeting (IEEE, Washington, DC, 2015), pp. 30.7.1–30.7.4

  15. A. Kunioka, T. Nakada, Jpn. J. Appl. Phys. 21, 73 (1982)

    Article  Google Scholar 

  16. T. Nakada, A. Kunioka, Jpn. J. Appl. Phys. 23, L587 (1984)

    Article  Google Scholar 

  17. T.K. Todorov, S. Singh, D.M. Bishop, O. Gunawan, Y.S. Lee, T.S. Gershon, K.W. Brew, P.D. Antunez, R. Haight, Nat. Commun. 8, 682 (2017)

    Article  Google Scholar 

  18. T.Y. Yu, F.M. Pan, C.Y. Chang, T. Hu, J.F. Chen, J.F. Wang, C.L. Lin, T.H. Chen, T.M. Chen, Curr. Appl. Phys. 14, 659 (2014)

    Article  Google Scholar 

  19. C.Y. Chang, Y.J. Lin, Y.W. Huang, J.Y. Liao, J.S. Lin, F.M. Pan, J. Mater. Sci. 29, 15203 (2018)

    Google Scholar 

  20. K. Wang, F. Chen, K. W. Shin, N. Allec, K. S. Karim, in Medical Imaging 2010 Physics Medical Imaging, ed. by E. Samei, N. J. Pelc (SPEI, San Diego, 2010), p. 762217

  21. F. Chen, K. Wang, Y. Fang, N. Allec, G. Belev, S. Kasap, K.S. Karim, IEEE Sens. J. 11, 505 (2011)

    Article  Google Scholar 

  22. K. Wang, F. Chen, N. Allec, K.S. Karim, I.E.E.E. Trans, Electron Devices 57, 1953 (2010)

    Article  Google Scholar 

  23. S. Abbaszadeh, N. Allec, K. Karim, IEEE Sens. J. 13, 1452 (2013)

    Article  Google Scholar 

  24. Y. Liu, L. Si, X. Zhou, X. Liu, Y. Xu, J. Bao, Z. Dai, J. Mater. Chem. A 2, 17735 (2014)

    Article  Google Scholar 

  25. Y. Yang, Q. Pei, A.J. Heeger, J. Appl. Phys. 79, 934 (1996)

    Article  Google Scholar 

  26. C.W. Hsu, L.J. Chou, Nano Lett. 12, 4247 (2012)

    Article  Google Scholar 

  27. J. Yang, B.S. Eller, R.J. Nemanich, J. Appl. Phys. 116, 123702 (2014)

    Article  Google Scholar 

  28. T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Yamaguchi, Y. Suzuki, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. Koh, D. Chua, Y. Mori, T. Shimosawa, K. Okano, Sensors 13, 13744 (2013)

    Article  Google Scholar 

  29. J. Mort, J. Appl. Phys. 39, 3543 (1968)

    Article  Google Scholar 

  30. K. K. Ng, in Complete Guide to Semiconductor Devices, ed. by K. K. Ng, 2nd ed. (Wiley, New Jersey, 2010), pp. 470–474

  31. S.M. Sze, D.J. Coleman, A. Loya, Solid State Electron. 14, 1209 (1971)

    Article  Google Scholar 

  32. F.M. Li, B.C. Bayer, S. Hofmann, J.D. Dutson, S.J. Wakeham, M.J. Thwaites, W.I. Milne, A.J. Flewitt, Appl. Phys. Lett. 98, 252903 (2011)

    Article  Google Scholar 

  33. M.D. Groner, J.W. Elam, F.H. Fabreguette, S.M. George, Thin Solid Films 413, 186 (2002)

    Article  Google Scholar 

  34. M. Lenzlinger, E.H. Snow, J. Appl. Phys. 40, 278 (1969)

    Article  Google Scholar 

  35. J.M. Beebe, B. Kim, J.W. Gadzuk, C. Daniel Frisbie, J.G. Kushmerick, Phys. Rev. Lett. 97, 26801 (2006)

    Article  Google Scholar 

  36. A.T. Tarekegne, H. Hirori, K. Tanaka, K. Iwaszczuk, P.U. Jepsen, New J. Phys. 19, 123018 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technology (MOST), R.O.C. under the contract number MOST 106-2221-E-009-075-MY2. Technical supports of the National Nano Device Laboratories and Nano Facility Center of National Chiao Tung University are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Ming Pan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CY., Huang, YW., Lin, YJ. et al. Photoconductive properties of polycrystalline selenium based lateral MISIM photodetectors of high quantum efficiency using different dielectrics as the charge blocking layer. J Mater Sci: Mater Electron 30, 12956–12965 (2019). https://doi.org/10.1007/s10854-019-01658-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01658-6

Navigation