Advertisement

Photoconductive properties of polycrystalline selenium based lateral MISIM photodetectors of high quantum efficiency using different dielectrics as the charge blocking layer

  • Cheng-Yi Chang
  • Yu-Wei Huang
  • Yi-Jie Lin
  • Jye-Yow Liao
  • Jian-Siang Lin
  • Yi-Ming Li
  • Chieh-Yang Chen
  • Jeng-Tzong Sheu
  • Fu-Ming PanEmail author
Article
  • 86 Downloads

Abstract

We studied the photoconductive performance of polycrystalline selenium (pc-Se) based photodetectors with a lateral metal–insulator-semiconductor-insulator–metal (MISIM) device structure. The insulator layer is a 10 nm-thick Ga2O3, HfO2, or Al2O3 thin film, and used as a charge blocking layer (CBL) to suppress dark current injected from the Al electrodes. The dark current suppression primarily depends on the barrier height of the junctions between the CBLs and electrodes. The Ga2O3 CBL exhibits a poor dark current suppression compared to the HfO2 and the Al2O3 CBLs because of a lower electron barrier at the cathode. The lateral pc-Se photodetectors exhibit a very high internal photocurrent gain due to Fowler–Nordheim tunneling at relatively low applied voltages. The better crystallinity of pc-Se grains formed on the Ga2O3 CBL leads to a higher photoconversion efficiency for the MISIM-Ga2O3 photodetector. Compared with amorphous Se based lateral MISIM photodetectors, the pc-Se photodetectors demonstrate a uniform and much better photoconductive performance over the visible spectrum.

Notes

Acknowledgments

This work is supported by the Ministry of Science and Technology (MOST), R.O.C. under the contract number MOST 106-2221-E-009-075-MY2. Technical supports of the National Nano Device Laboratories and Nano Facility Center of National Chiao Tung University are also acknowledged.

Supplementary material

10854_2019_1658_MOESM1_ESM.pdf (246 kb)
Supplementary material 1 (PDF 245 kb)

References

  1. 1.
    W.D. Park, K. Tanioka, Jpn. J. Appl. Phys. 48, 04C159 (2009)Google Scholar
  2. 2.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)CrossRefGoogle Scholar
  3. 3.
    C.Y. Chang, F.M. Pan, J.S. Lin, T.Y. Yu, Y.M. Li, C.Y. Chen, J. Appl. Phys. 120, 234501 (2016)CrossRefGoogle Scholar
  4. 4.
    T.Y. Yu, F.M. Pan, C.Y. Chang, J.S. Lin, W.H. Huang, J. Appl. Phys. 118, 44509 (2015)CrossRefGoogle Scholar
  5. 5.
    S.O. Kasap, J.A. Rowlands, J. Mater. Sci. 11, 179 (2000)Google Scholar
  6. 6.
    S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, L. Laperriere, A. Reznik, J.A. Rowlands, Phys. Status Solidi 246, 1794 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, T. Nakada, T. Okino, Y. Hirose, Y. Kato, N. Teranishi, in 2014 IEEE International Electron Devices Meeting (IEEE, San Francisco, 2014), pp. 4.3.1–4.3.4Google Scholar
  8. 8.
    J.R. Scheuermann, Y. Miranda, H. Liu, W. Zhao, J. Appl. Phys. 119, 24508 (2016)CrossRefGoogle Scholar
  9. 9.
    K. Hu, H. Chen, M. Jiang, F. Teng, L. Zheng, X. Fang, Adv. Funct. Mater. 26, 6641 (2016)CrossRefGoogle Scholar
  10. 10.
    L.B. Luo, X.B. Yang, F.X. Liang, J.S. Jie, Q. Li, Z.F. Zhu, C.Y. Wu, Y.Q. Yu, L. Wang, CrystEngComm 14, 1942 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Imura, K. Kikuchi, K. Miyakawa, M. Kubota, Can. J. Phys. 92, 645 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, J. Phys: Conf. Ser. 619, 12008 (2015)Google Scholar
  13. 13.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, Appl. Phys. Lett. 104, 242101 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Imura, K. Kikuchi, K. Miyakawa, H. Ohtake, M. Kubota, T. Okino, Y. Hirose, Y. Kato, N. Teranishi, in 2015 IEEE International Electron Devices Meeting (IEEE, Washington, DC, 2015), pp. 30.7.1–30.7.4Google Scholar
  15. 15.
    A. Kunioka, T. Nakada, Jpn. J. Appl. Phys. 21, 73 (1982)CrossRefGoogle Scholar
  16. 16.
    T. Nakada, A. Kunioka, Jpn. J. Appl. Phys. 23, L587 (1984)CrossRefGoogle Scholar
  17. 17.
    T.K. Todorov, S. Singh, D.M. Bishop, O. Gunawan, Y.S. Lee, T.S. Gershon, K.W. Brew, P.D. Antunez, R. Haight, Nat. Commun. 8, 682 (2017)CrossRefGoogle Scholar
  18. 18.
    T.Y. Yu, F.M. Pan, C.Y. Chang, T. Hu, J.F. Chen, J.F. Wang, C.L. Lin, T.H. Chen, T.M. Chen, Curr. Appl. Phys. 14, 659 (2014)CrossRefGoogle Scholar
  19. 19.
    C.Y. Chang, Y.J. Lin, Y.W. Huang, J.Y. Liao, J.S. Lin, F.M. Pan, J. Mater. Sci. 29, 15203 (2018)Google Scholar
  20. 20.
    K. Wang, F. Chen, K. W. Shin, N. Allec, K. S. Karim, in Medical Imaging 2010 Physics Medical Imaging, ed. by E. Samei, N. J. Pelc (SPEI, San Diego, 2010), p. 762217Google Scholar
  21. 21.
    F. Chen, K. Wang, Y. Fang, N. Allec, G. Belev, S. Kasap, K.S. Karim, IEEE Sens. J. 11, 505 (2011)CrossRefGoogle Scholar
  22. 22.
    K. Wang, F. Chen, N. Allec, K.S. Karim, I.E.E.E. Trans, Electron Devices 57, 1953 (2010)CrossRefGoogle Scholar
  23. 23.
    S. Abbaszadeh, N. Allec, K. Karim, IEEE Sens. J. 13, 1452 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Liu, L. Si, X. Zhou, X. Liu, Y. Xu, J. Bao, Z. Dai, J. Mater. Chem. A 2, 17735 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Yang, Q. Pei, A.J. Heeger, J. Appl. Phys. 79, 934 (1996)CrossRefGoogle Scholar
  26. 26.
    C.W. Hsu, L.J. Chou, Nano Lett. 12, 4247 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Yang, B.S. Eller, R.J. Nemanich, J. Appl. Phys. 116, 123702 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Masuzawa, I. Saito, T. Yamada, M. Onishi, H. Yamaguchi, Y. Suzuki, K. Oonuki, N. Kato, S. Ogawa, Y. Takakuwa, A. Koh, D. Chua, Y. Mori, T. Shimosawa, K. Okano, Sensors 13, 13744 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Mort, J. Appl. Phys. 39, 3543 (1968)CrossRefGoogle Scholar
  30. 30.
    K. K. Ng, in Complete Guide to Semiconductor Devices, ed. by K. K. Ng, 2nd ed. (Wiley, New Jersey, 2010), pp. 470–474Google Scholar
  31. 31.
    S.M. Sze, D.J. Coleman, A. Loya, Solid State Electron. 14, 1209 (1971)CrossRefGoogle Scholar
  32. 32.
    F.M. Li, B.C. Bayer, S. Hofmann, J.D. Dutson, S.J. Wakeham, M.J. Thwaites, W.I. Milne, A.J. Flewitt, Appl. Phys. Lett. 98, 252903 (2011)CrossRefGoogle Scholar
  33. 33.
    M.D. Groner, J.W. Elam, F.H. Fabreguette, S.M. George, Thin Solid Films 413, 186 (2002)CrossRefGoogle Scholar
  34. 34.
    M. Lenzlinger, E.H. Snow, J. Appl. Phys. 40, 278 (1969)CrossRefGoogle Scholar
  35. 35.
    J.M. Beebe, B. Kim, J.W. Gadzuk, C. Daniel Frisbie, J.G. Kushmerick, Phys. Rev. Lett. 97, 26801 (2006)CrossRefGoogle Scholar
  36. 36.
    A.T. Tarekegne, H. Hirori, K. Tanaka, K. Iwaszczuk, P.U. Jepsen, New J. Phys. 19, 123018 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Cheng-Yi Chang
    • 1
  • Yu-Wei Huang
    • 1
  • Yi-Jie Lin
    • 1
  • Jye-Yow Liao
    • 1
  • Jian-Siang Lin
    • 1
  • Yi-Ming Li
    • 2
  • Chieh-Yang Chen
    • 2
  • Jeng-Tzong Sheu
    • 3
  • Fu-Ming Pan
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Chiao-Tung UniversityHsinchuTaiwan, ROC
  2. 2.Department of Electrical EngineeringNational Chiao-Tung UniversityHsinchuTaiwan, ROC
  3. 3.Institute of Biomedical EngineeringNational Chiao-Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations