Viscoplastic characterization and mechanical strength of novel Sn–1.7Ag–0.7Cu lead-free solder alloys with microalloying of Te and Co

  • A. A. El-DalyEmail author
  • A. A. Ibrahiem
  • M. A. Abdo
  • N. A. M. Eid


A persistent dream in lead-free Sn–Ag–Cu solder community is to attain both high strength and ductility for the design and reliability of soldered joints. Microalloying Te or Co has been anticipated to modify the low Ag-content Sn–1.7Ag–0.7Cu solders in different aspects. This research investigates the effect of minor additions of Te and Co on the development of solidified microstructure, thermal and tensile properties of Sn–1.7Ag–0.7Cu solders alloys. It is seen that trace amount of Te addition (0.2 wt%) results in the formation of SnTe intermetallic (IMC) and increasing eutectic microstructure, whereas a minor amount of Co (0.5 wt%) is completely changed the solidification mode. Microalloying Co refines the Cu6Sn5 and Ag3Sn particles and leads to formation of more stripe-like (Cu, Co)6Sn5 morphology together with Co3Sn. These effects were significantly enhanced both the high strength by ~ 16% and ductility by ~ 72% at 110 °C, respectively, which play a vital role in drop impact implementation development. Moreover, Te or Co-microalloying could severely modify the growth restriction factor of SAC177 solder and markedly reduce the degree of undercooling of SAC177 from 17.8 to 11.6 and 2.6 °C, respectively. The utility of this research was demonstrated by design of lead-free micro-joints that simultaneously exhibit high-reliability with low cost.



  1. 1.
    J. Wu, S. Xue, J. Wang, M. Wu, J. Alloys Compd. 784, 471–487 (2019)CrossRefGoogle Scholar
  2. 2.
    E.H. El-Khawas, H. El-Hosainy, A.A. El-Daly, J. Mater. Sci. 28, 12176–12183 (2017)Google Scholar
  3. 3.
    Z. Gyökér, G. Gergely, D.K. Horváth, E. Bodnár, Z. Gácsi, Appl. Surf. Sci. 475, 982–985 (2019)CrossRefGoogle Scholar
  4. 4.
    Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloys Compd. 719, 365–375 (2017)CrossRefGoogle Scholar
  5. 5.
    A.A. El-Daly, A.A. Ibrahiem, J. Alloys Compd. 740, 801–809 (2018)CrossRefGoogle Scholar
  6. 6.
    J.H. Moon, S.M. Baek, S.G. Lee, Y. Seong, A. Amanov, S. Lee, H.S. Kim, Mater. Res. Lett. 7(3), 97–102 (2019)CrossRefGoogle Scholar
  7. 7.
    G. Ren, M.N. Collins, J. Alloys Compd. 791, 559–566 (2019)CrossRefGoogle Scholar
  8. 8.
    G. Zeng, S.D. McDonald, Q. Gu, Y. Terada, K. Uesugi, H. Yasuda, K. Nogita, Acta Mater. 83, 357–371 (2015)CrossRefGoogle Scholar
  9. 9.
    Q.B. Tao, L. Benabou, V.N. Le, H. Hwang, D.B. Luu, J. Alloys Compd. 694, 892–904 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Laurila, V. Vuorinen, M.P. Kröckel, Mater. Sci. Eng., R 68, 1–38 (2010)CrossRefGoogle Scholar
  11. 11.
    Z.L. Ma, S.A. Belyakov, C.M. Gourlay, J. Alloys Compd. 682, 326–337 (2016)CrossRefGoogle Scholar
  12. 12.
    F. Gao, T. Takemoto, H. Nishikawa, Mater. Sci. Eng., A 420, 39–46 (2006)CrossRefGoogle Scholar
  13. 13.
    M.A. Fazal, N.K. Liyana, S. Rubaiee, A. Anas, Measurement 134, 897–907 (2019)CrossRefGoogle Scholar
  14. 14.
    X. Chen, J. Zhou, F. Xue, J. Bai, Y. Yao, J. Electron. Mater. 44(2), 725 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Wu, S. Xue, J. Wang, J. Wang, S. Liu, J. Mater. Sci. 28, 10230–10244 (2017)Google Scholar
  16. 16.
    M. Yang, Y.H. Ko, J.H. Bang, T.S. Kim, C.W. Lee, M.Y. Li, Mater. Charact. 124, 250–259 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Wu, S.B. Xue, J.W. Wang, J.X. Wang, S. Liu, J. Mater. Sci. 28(14), 10230–10244 (2017)Google Scholar
  18. 18.
    A.A. El-Daly, A.M. El-Taher, S. Gouda, Mater. Des. 65, 796–805 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Saad, S.A. Fayek, A. Fawzy, H.N. Soliman, Gh Mater, Sci. Eng. A 527, 904–910 (2010)CrossRefGoogle Scholar
  20. 20.
    H.R. Kotadia, P.D. Howes, S.H. Mannan, Microelectron. Reliab. 54, 1253–1273 (2014)CrossRefGoogle Scholar
  21. 21.
    K. Hsieh, M.S. Wei, Y.A. Chang, Z. Metallkd. 74, 330–337 (1983)Google Scholar
  22. 22.
    M.N. Collins, J. Punch, R. Coyle, Solder. Surf. Mt. Technol. 24, 240–248 (2012)CrossRefGoogle Scholar
  23. 23.
    S.A. Belyakov, C.M. Gourlay, Acta Mater. 71, 56–68 (2014)CrossRefGoogle Scholar
  24. 24.
    M.N. Collins, J. Punch, R. Coyle, M. Reid, R. Popowich, P. Read, IEEE 228 Trans. Comp. Packaging Manuf. Technol. 1, 1594–1600 (2011)CrossRefGoogle Scholar
  25. 25.
    E. Dalton, G. Ren, J. Punch, M.N. Collins, Mater. Des. 154, 184–191 (2018)CrossRefGoogle Scholar
  26. 26.
    M.N. Collins, E. Dalton, J. Punch, J. Alloys Compd. 688, 164–170 (2016)CrossRefGoogle Scholar
  27. 27.
    D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59, 4907–4921 (2011)CrossRefGoogle Scholar
  28. 28.
    T.E. Quested, A.L. Greer, Acta Mater. 52, 3859–3868 (2004)CrossRefGoogle Scholar
  29. 29.
    T.B. Massalski (ed.), Binary alloy phase diagrams, 2nd edn. (ASM International, Ohio, 1992), p. 3416Google Scholar
  30. 30.
    R.C. Sharma, Y.A. Chang, Bull. Alloy Ph. Diagr. 7(1), 72 (1986)CrossRefGoogle Scholar
  31. 31.
    K. Nogita, C.M. Gourlay, T. Nishimura, Jom-Us 61(6), 45–51 (2009)CrossRefGoogle Scholar
  32. 32.
    X. Chen, J. Zhou, F. Xue, J. Bai, Y. Yao, J. Electron. Mater. 44(2), 725–732 (2015)CrossRefGoogle Scholar
  33. 33.
    A.A. El-Daly, W.M. Desoky, A.F. Saad, N.A. Mansor, E.H. Lotfy, H.M. Abd-Elmoniem, H. Hashem, Mater. Des. 80, 152–162 (2015)CrossRefGoogle Scholar
  34. 34.
    A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Mater. Des. 55, 309–318 (2014)CrossRefGoogle Scholar
  35. 35.
    R.W. Hertzberg, Deformation and fracture mechanics of engineering materials (John Wiley and Sons, New York, 1996), pp. 41–86Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. A. El-Daly
    • 1
    Email author
  • A. A. Ibrahiem
    • 1
  • M. A. Abdo
    • 1
  • N. A. M. Eid
    • 1
  1. 1.Physics Department, Faculty of ScienceZagazig UnivZagazigEgypt

Personalised recommendations