Annealing effects on the performances of Bismuth-doped Indium Zinc Oxide thin-film transistors

  • Dong Lin
  • Xudong Zheng
  • Jianwen Yang
  • Kaiwen Li
  • Jingjing Shao
  • Qun ZhangEmail author


In this work, annealing effects on the characteristics of bismuth-doped indium zinc oxide (IZBO) thin films and the electrical properties of IZBO thin-film transistors (TFTs) were investigated. The X-ray diffraction results reveal that all the IZBO thin films have an amorphous structure regardless of different annealing temperatures. In addition, all the a-IZBO thin films exhibit high transmittance in the visible light region. It is found that the annealing temperature has strong influences on the performances of a-IZBO TFTs. The devices annealed at 400 °C exhibit optimum performances with a field effect mobility of 25.4 cm2 V−1 s−1, a subthreshold swing of 0.22 V decade−1, a threshold voltage of −1.4 V and an on-to-off current ratio of 4.3 × 107. Stability of the devices under positive bias stress and negative bias stress were studied as well.



This work was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 16JC1400603) and the National Natural Science Foundation of China (Grant No. 61471126).


  1. 1.
    X. Yu, T.J. Marks, A. Facchetti, Metal oxides for optoelectronic applications. Nat. Mater. 15, 383–396 (2016)CrossRefGoogle Scholar
  2. 2.
    J.-R. Yim, S.-Y. Jung, H.-W. Yeon, J.-Y. Kwon, Y.-J. Lee, J.-H. Lee, Y.-C. Joo, Effects of metal electrode on the electrical performance of amorphous In–Ga–Zn–O thin film transistor. Jpn. J. Appl. Phys. 51, 011401 (2011)CrossRefGoogle Scholar
  3. 3.
    J.F. Wager, B. Yeh, R.L. Hoffman, D.A. Keszler, An amorphous oxide semiconductor thin-film transistor route to oxide electronics. Curr. Opin. Solid State Mater. Sci. 18, 53–61 (2014)CrossRefGoogle Scholar
  4. 4.
    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin–film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Ruzgar, M. Caglar, The effect of Sn on electrical performance of zinc oxide based thin film transistor. J. Mater. Sci.: Mater. Electron. 30(1), 485–490 (2019)Google Scholar
  6. 6.
    Y.S. Jung, J.Y. Seo, D.W. Lee, D.Y. Jeon, Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film. Thin Solid Films 445, 63–71 (2003)CrossRefGoogle Scholar
  7. 7.
    J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Transparent amorphous oxide semiconductor thin film transistor. Electron. Mater. Lett. 7, 1–11 (2011)CrossRefGoogle Scholar
  8. 8.
    Y.J. Im, S.J. Kim, J.H. Shin, S.S. Ha, C.H. Park, M. Yi, Improvement in the electrical performance of Ge-doped InZnO thin-film transistor. J. Nanosci. Nanotechnol. 15, 7537–7541 (2015)CrossRefGoogle Scholar
  9. 9.
    M.H. Cho, H. Seol, A. Song, S. Choi, Y. Song, P.S. Yun, K.-B. Chung, J.U. Bae, K.-S. Park, J.K. Jeong, Comparative study on performance of IGZO transistors with sputtered and atomic layer deposited channel layer. IEEE Trans. Electron Devices 66, 1783–1788 (2019)CrossRefGoogle Scholar
  10. 10.
    R. Fu, J. Yang, W.C. Chang, W.C. Chang, C.M. Chang, D. Lin, Q. Zhang, P.T. Liu, H.P.D. Shieh, The influence of annealing temperature on amorphous Indium–Zinc–Tungsten Oxide thin–film transistors. Physica Status Solidi (a) 215(6), 1700785 (2018)CrossRefGoogle Scholar
  11. 11.
    H.-W. Park, B.-K. Kim, J.-S. Park, K.-B. Chung, Device performance and bias instability of Ta doped InZnO thin film transistor as a function of process pressure. Appl. Phys. Lett. 102, 102102 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Parthiban, J.-Y. Kwon, Amorphous boron–indium–zinc-oxide active channel layers for thin-film transistor fabrication. J. Mater. Chem. C 3, 1661–1665 (2015)CrossRefGoogle Scholar
  13. 13.
    P.K. Jha, P.A. Jha, P. Kumar, K. Asokan, R. Dwivedi, Defect induced weak ferroelectricity and magnetism in cubic off-stoichiometric nano bismuth iron garnet: effect of milling duration. J. Mater. Sci.: Mater. Electron. 25(2), 664–672 (2014)Google Scholar
  14. 14.
    D.R. Lide, CRC handbook of chemistry and physics (CRC Press, Boca Raton, 2004)Google Scholar
  15. 15.
    S. Pi, J. Yang, Y. Han, Q. Zhang, Investigation of bismuth doped indium-zinc-oxide thin film transistors. J. Fudan Univ. 56, 309–313 (2017)Google Scholar
  16. 16.
    J. Yang, S. Pi, Y. Han, R. Fu, T. Meng, Q. Zhang, Characteristic of bismuth-doped tin oxide thin-film transistors. IEEE Trans. Electron Devices 63, 1904–1909 (2016)CrossRefGoogle Scholar
  17. 17.
    S. Aikawa, P. Darmawan, K. Yanagisawa, T. Nabatame, Y. Abe, K. Tsukagoshi, Thin-film transistors fabricated by low-temperature process based on Ga-and Zn-free amorphous oxide semiconductor. Appl. Phys. Lett. 102, 102101 (2013)CrossRefGoogle Scholar
  18. 18.
    K. Ide, K. Nomura, H. Hosono, T. Kamiya, Electronic defects in amorphous oxide semiconductors: a review. Physica Status Solidi (a) 216(5), 1800372 (2019)CrossRefGoogle Scholar
  19. 19.
    K. Ide, K. Nomura, H. Hiramatsu, T. Kamiya, H. Hosono, Structural relaxation in amorphous oxide semiconductor, a-In-Ga-Zn-O. J. Appl. Phys. 111, 073513 (2012)CrossRefGoogle Scholar
  20. 20.
    K. Ide, K. Ishikawa, H. Tang, T. Katase, H. Hiramatsu, H. Kumomi, H. Hosono, T. Kamiya, Effects of base pressure on growth and optoelectronic properties of amorphous In–Ga–Zn–O: ultralow optimum oxygen supply and bandgap widening. Physica Status Solidi (a) 216(5), 1700832 (2019)CrossRefGoogle Scholar
  21. 21.
    J. Raja, K. Jang, N. Balaji, W. Choi, T. Thuy Trinh, J. Yi, Negative gate-bias temperature stability of N-doped InGaZnO active-layer thin-film transistors. Appl. Phys. Lett. 102(8), 083505 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Liu, G. Li, R. Di Pietro, J. Huang, Y.-Y. Noh, X. Liu, T. Minari, Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 8, 034020 (2017)CrossRefGoogle Scholar
  23. 23.
    M. Kumar, H. Jeong, D. Lee, Solution-processed ZnO thin-film transistors codoped with Na and F. J. Mater. Sci.: Mater. Electron. 29(15), 13058–13067 (2018)Google Scholar
  24. 24.
    J. Yang, R. Fu, Y. Han, T. Meng, Q. Zhang, The stability of tin silicon oxide thin-film transistors with different annealing temperatures. Europhys. Lett. 115, 28006 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Socratous, K.K. Banger, Y. Vaynzof, A. Sadhanala, A.D. Brown, A. Sepe, U. Steiner, H. Sirringhaus, Electronic structure of low-temperature solution–processed amorphous metal oxide semiconductors for thin-film transistor applications. Adv. Funct. Mater. 25, 1873–1885 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Lin, S. Pi, J. Yang, N. Tiwari, J. Ren, Q. Zhang, P.-T. Liu, H.-P. Shieh, Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO: N channel layer. Semicond. Sci. Technol. 33, 065001 (2018)CrossRefGoogle Scholar
  27. 27.
    C.-S. Fuh, P.-T. Liu, W.-H. Huang, S.M. Sze, Effect of annealing on defect elimination for high mobility amorphous indium-zinc-tin-oxide thin-film transistor. IEEE Electron Device Lett. 35, 1103–1105 (2014)CrossRefGoogle Scholar
  28. 28.
    B. Li, H. Wang, D. Zhou, Z. Hu, H. Wu, S. Gao, Y. Peng, L. Yi, X. Zhang, Y. Wang, Preparation and the electrical properties of In–Zn–Li–O thin film transistor by radio frequency magnetron sputtering. Mater. Lett. 137, 82–84 (2014)CrossRefGoogle Scholar
  29. 29.
    A.D. Lestari, I. Noviyana, M. Putri, Y.-W. Heo, H.Y. Lee, Effect of the active channel thickness variation in amorphous In–Zn–Sn–O thin film transistor. J. Nanosci. Nanotechnol. 19, 1686–1689 (2019)CrossRefGoogle Scholar
  30. 30.
    W. Xu, M. Xu, J. Jiang, C. Luan, L. Han, X. Feng, High performance thin film transistors with sputtered In–Al–Zn–O channel and different source/drain electrodes. IEEE Electron Device Lett. 40, 247–250 (2019)CrossRefGoogle Scholar
  31. 31.
    J. Yang, P.-Y. Liao, T.-C. Chang, H.-C. Chiang, B.-W. Chen, Y.-C. Chien, D. Lin, J. Ren, R. Fu, M. Qu, H2O adsorption on amorphous In-Ga-Zn-O thin-film transistors under negative bias stress. Appl. Phys. Lett. 111, 073506 (2017)CrossRefGoogle Scholar
  32. 32.
    S. Yue, J. Lu, R. Lu, S. Li, X. Li, J. Zhang, L. Chen, Z. Ye, Ultrathin amorphous ZnGexSnO films for high performance ultra-thin-film transistors. Appl. Phys. Lett. 113, 013504 (2018)CrossRefGoogle Scholar
  33. 33.
    Y. Vygranenko, K. Wang, A. Nathan, Stable indium oxide thin-film transistors with fast threshold voltage recovery. Appl. Phys. Lett. 91, 263508 (2007)CrossRefGoogle Scholar
  34. 34.
    J.K. Jeong, H. Won Yang, J.H. Jeong, Y.G. Mo, H.D. Kim, Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93(12), 123508 (2008)CrossRefGoogle Scholar
  35. 35.
    W.-T. Chen, S.-Y. Lo, S.-C. Kao, H.-W. Zan, C.-C. Tsai, J.-H. Lin, C.-H. Fang, C.-C. Lee, Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors. IEEE Electron Device Lett. 32, 1552–1554 (2011)CrossRefGoogle Scholar
  36. 36.
    P.-T. Liu, Y.-T. Chou, L.-F. Teng, Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress. Appl. Phys. Lett. 95, 233504 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dong Lin
    • 1
  • Xudong Zheng
    • 1
  • Jianwen Yang
    • 1
  • Kaiwen Li
    • 1
  • Jingjing Shao
    • 1
  • Qun Zhang
    • 1
    Email author
  1. 1.Department of Materials Science, National Engineering Lab for TFT-LCD Materials and TechnologiesFudan UniversityShanghaiChina

Personalised recommendations