Advertisement

Study of electrocaloric effect in lead-free 0.9K0.5Na0.5NbO3–0.1CaZrO3 solid solution ceramics

  • Sanjeev Kumar
  • Satyendra SinghEmail author
Article
  • 125 Downloads

Abstract

Ferroelectric (FE) materials with large electrocaloric effect (ECE) in a broad operational temperature span are very attractive for solid-state cooling device applications. We have experimentally investigated the ECE in eco-friendly 0.9K0.5Na0.5NbO3–0.1CaZrO3 ferroelectric solid solution ceramics synthesized through a solid-state synthesis route. The polarization measurements as a function of applied electric fields were carried-out in a large temperature range and the ECE was calculated by an indirect thermodynamic approach. The maximum value of ECE (ΔT) was found to be 0.27 K at 402 K under the electric field of 40 kV/cm and the corresponding EC responsivity (∆T/∆E) was found to be 0.675 × 10−7 K mV−1. The results of ECE response show that this material has the great potentials for its utility in next generation solid state refrigeration technologies.

Notes

Acknowledgements

S. Singh gratefully acknowledges the financial support received from DST (PURSE-II) and SERB (EEQ/2016/000256), Govt. of India. S. Kumar acknowledges the award of the junior research fellowship from CSIR, Govt. of India. Authors appreciate their fruitful discussions with the group member Mr. Raju Kumar.

References

  1. 1.
    E. Defay, R. Faye, G. Despesse, H. Strozyk, D. Sette, S. Crossley, X. Moya, N.D. Mathur, Nat. Commun. 9, 1827 (2018)CrossRefGoogle Scholar
  2. 2.
    T. Correia, Q. F (eds.), Electrocaloric Materials (Springer Verlag, Berlin, Heidelberg, 2014)Google Scholar
  3. 3.
    S.G. Lu, Q. Zhang, Adv. Mater. 21, 1983–1987 (2009)CrossRefGoogle Scholar
  4. 4.
    X. Moya, S.K. Narayan, N.D. Mathur, Nat. Mater. 13, 439–450 (2014)CrossRefGoogle Scholar
  5. 5.
    R. Kumar, S. Singh, Sci. Rep. 8, 3186 (2018)CrossRefGoogle Scholar
  6. 6.
    X. Moya, E. Defay, N.D. Mathur, Hirose. MRS Bull. 43, 291–294 (2018)CrossRefGoogle Scholar
  7. 7.
    F. Amici, A.S. Amaro, C.S. Enesco, T. Cacchione, M. Allritz, J.S. Bonet, F. Rossano, Sci. Rep. 9, 1721 (2019)CrossRefGoogle Scholar
  8. 8.
    N. Novak, F. Weyland, S. Patel, H. Guo, X. Tan, J. Rödel, J. Koruza, Phys. Rev. B 97, 094113 (2018)CrossRefGoogle Scholar
  9. 9.
    X. Moya, E. Defay, V. Heine, N.D. Mathur, Nat. Phys. 11, 202–205 (2015)CrossRefGoogle Scholar
  10. 10.
    M.C. Rose, R.E. Cohen, Phys. Rev. Lett. 109, 187604 (2012)CrossRefGoogle Scholar
  11. 11.
    X. Moya, E.S. Taulats, S. Crossley, D.G. Alonso, S.K. Narayan, A. Planes, L. Manosa, N.D. Mathur, Adv. Mater. 25, 1360 (2013)CrossRefGoogle Scholar
  12. 12.
    Y. Bai, X. Han, L. Qiao, Appl. Phys. Lett. 102, 252904 (2013)CrossRefGoogle Scholar
  13. 13.
    A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, N. Mathur, Science 311, 1270 (2006)CrossRefGoogle Scholar
  14. 14.
    Y.M. Gonzalez, A.P. Barranco, T. Yang, J.D.S. Guerra, Appl. Phys. Lett. 112, 122904 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Guo, M. Wu, W. Gao, B. Sun, X. Lou, J. Mater. Chem. C 7, 617–621 (2019)CrossRefGoogle Scholar
  16. 16.
    X. Yan, M. Zhu, Q. Wei, S. Lu, M. Zheng, Y. Hou, Scr. Mater. 162, 256–260 (2019)CrossRefGoogle Scholar
  17. 17.
    S. Patel, A. Chauhan, R. Vaish, Ener. Tech. 4, 244–248 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Ozawa, H. Ishiwata, M. Hatano, T. Iwasaki, Phys. Status Solidi A 215, 1800342 (2018)CrossRefGoogle Scholar
  19. 19.
    K. Srikanth, R. Vaish, J. Eur. Ceram. Soc. 37, 3927–3933 (2017)CrossRefGoogle Scholar
  20. 20.
    L. Luo, X. Jiang, Y. Zhang, K. Li, J. Eur. Ceram. Soc. 37, 2803–2812 (2017)CrossRefGoogle Scholar
  21. 21.
    A. Gupta, R. Kumar, S. Singh, Scr. Mater. 143, 5–9 (2018)CrossRefGoogle Scholar
  22. 22.
    J. Koruza, B. Rozic, G. Cordoyiannis, B. Malic, Z. Kutnjak, Appl. Phys. Lett. 106, 202905 (2015)CrossRefGoogle Scholar
  23. 23.
    R. Kumar, S. Singh, J. Alloys Compd. 723, 589–594 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Yang, X. Hao, Electrocaloric effect and pyroelectric performance in (K, Na) NbO3-based lead-free ceramics. J. Am. Ceram. Soc (2019).  https://doi.org/10.1111/jace.16598 Google Scholar
  25. 25.
    N.L. Ross, T.D. Chaplin, J. Solid State Chem. 172, 123–126 (2003)CrossRefGoogle Scholar
  26. 26.
    Y. Zhang, L. Li, W. Bai, B. Shen, J. Zhai, B. Li, RSC Adv. 5, 19647 (2015)CrossRefGoogle Scholar
  27. 27.
    A. Kumar, R. Kumar, K. Singh, S. Singh, Phys. Status Solidi A 216, 1800786 (2019)CrossRefGoogle Scholar
  28. 28.
    W. Liang, W. Wu, D. Xiao, J. Zhu, J. Am. Ceram. Soc. 94, 4317–4322 (2011)CrossRefGoogle Scholar
  29. 29.
    U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)CrossRefGoogle Scholar
  30. 30.
    B. Qu, H. Du, Z. Yang, J. Mater. Chem. C 4, 1795–1803 (2016)CrossRefGoogle Scholar
  31. 31.
    R. Kumar, S. Singh, J. Alloy. Compd. 764, 289–294 (2018)CrossRefGoogle Scholar
  32. 32.
    X. Wang, J. Wu, B. Dkhil, B. Xu, X. Wang, G. Dong, G. Yang, X. Lou, Appl. Phys. Lett. 110, 63904 (2017)CrossRefGoogle Scholar
  33. 33.
    P.Z. Ge, X.G. Tang, Q.X. Liu, Y.P. Jiang, W.H. Li, J. Luo, J. Mater. Sci. 29, 1075–1081 (2018)Google Scholar
  34. 34.
    H. Kaddoussi, Y. Gagou, A. Lahmar, B. Allouche, J.L. Dellis, M. Courty, H. Khemakhem, M.E. Marssi, J. Mater. Sci. 51, 3454–3462 (2016)CrossRefGoogle Scholar
  35. 35.
    B. Asbani, J.L. Dellis, Y. Gagou, H. Kaddoussi, A. Lahmar, M. Amjoud, D. Mezzane, Z. Kutnjak, M.E. Marssi, EPL 111, 57008 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Shi, R. Zhu, X. Liu, B. Fang, N. Yuan, J. Ding, H. Luo, Materials 10, 1093 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Bai, X. Han, K. Ding, L.J. Qiao, Appl. Phys. Lett. 103, 162902 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Special Centre for NanoscienceJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations