Effect of graphene infusion on morphology and performance of natural rubber latex/graphene composites

  • Marlinda Ab RahmanEmail author
  • Goh Boon Tong
  • Nurul Hazierah Kamaruddin
  • Fadilah Abd Wahab
  • Nor Aliya Hamizi
  • Zaira Zaman Chowdhury
  • Suresh Sagadevan
  • Narong Chanlek
  • Mohd Rafie Johan


Nowadays developments of most flexible electronic devices have significantly increased due to high demand on healthcare applications of daily life activities. Given these development factors, the production of nanoparticles-polymer composite improves the functionality of stretchable or improves interfacial adherence between the matrix and nanoparticles. In this research work, graphene used as functional filler materials into the polymer (natural rubber latex) matrices is presented. The surface morphology of pure natural rubber latex (NRL) and natural rubber latex/graphene (NRL/G) composite were observed by using Scanning electron microscopy (SEM). The X-ray photoelectron spectroscopy (XPS) was recorded to investigate the elements and functional groups present in the graphene and NRL and in the NRL/G composite. Furthermore, the mechanical and conductivity properties of the pure NRL and NRL/G composite are studied. The mechanical property and conductivity test were performed by a universal testing machine and two-point probes measurement respectively.



The authors would like to acknowledge the financial support provided by a Science Fund grant from the Ministry of Energy, Science, Technology, Environment and Climate Change (03-01-03-SF1133) and Research University grant from University of Malaya (RU004-2017). Authors are also thankful to Dr. Azira Abd Aziz From Malaysia Rubber Board for supplying the latex resources to support this work.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    L.R.G. Treloar, The physics of rubber elasticity, 3rd edn. (Clarendon Press, Oxford, 1975), p. 3Google Scholar
  2. 2.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)CrossRefGoogle Scholar
  5. 5.
    S. Park, R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009)CrossRefGoogle Scholar
  6. 6.
    H. Kim, S. Kobayashi, M.A. AbdurRahim, M.J. Zhang, A. Khusainova, M.A. Hillmyer, A.A. Abdala, C.W. Macosko, Polymer 52, 1837–1846 (2011)CrossRefGoogle Scholar
  7. 7.
    M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, ACS Nano 3, 3884–3890 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Bakour, M. Baitoul, O. Bajjou, F. Massuyeau, E. Faulques, Mater. Res. Express 4, 025031 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Goumri, J.W. Venturini, A. Bakour, M. Khenfouch, M. Baitoul, Appl. Phys. A 122, 212 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Seekaew, O. Arayawut, K. Timsorn, C. Wongchoosuk, Carbon-based nanofillers and their rubber nanocomposites, in Carbon nano-objects, ed. by S. Yaragalla, R. Mishra, S. Thomas, N. Kalarikkal, H.J. Maria (Elsevier, Amsterdam, 2019), pp. 259–283Google Scholar
  11. 11.
    Y.Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, A.T. Shen Wee, J. Phys. Chem. C 112, 10637–10640 (2008)CrossRefGoogle Scholar
  12. 12.
    A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)CrossRefGoogle Scholar
  13. 13.
    S. Toki, B.S. Hsiao, Macromolecules 36, 5915–5917 (2003)CrossRefGoogle Scholar
  14. 14.
    C.A. Rezende, F.C. Bragança, T.R. Doi, L.-T. Lee, F. Galembeck, F. Boué, Polymer 51, 3644–3652 (2010)CrossRefGoogle Scholar
  15. 15.
    D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Appl. Surf. Sci. 273, 484–490 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Wang, F. Ma, M. Sun, RSC Adv. 7, 16801–16822 (2017)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Chem. Mater. 2, 557–563 (1990)CrossRefGoogle Scholar
  18. 18.
    F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883–2887 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, R.S. Ruoff, Nano Lett. 9, 1597 (2009)Google Scholar
  20. 20.
    G. Beamson, The Scienta ESCA 300 Database (John Wiley and Sons Ltd, New Jersey, 1992)Google Scholar
  21. 21.
    N. George, J. Chandra, A. Mathiazhagan, R. Joseph, Compos. Sci. Technol. 116, 33–40 (2015)CrossRefGoogle Scholar
  22. 22.
    S.H. Jin, Y.-B. Park, K.H. Yoon, Compos. Sci. Technol. 67, 3434–3441 (2007)CrossRefGoogle Scholar
  23. 23.
    S.S. Sarkawi, W.K. Dierkes, J.W.M. Noordermeer, Rubber Chem. Technol. 88, 359–372 (2015)CrossRefGoogle Scholar
  24. 24.
    H. Kang, Y. Tang, L. Yao, F. Yang, Q. Fang, D. Hui, Compos. Part B 112, 1–7 (2017)CrossRefGoogle Scholar
  25. 25.
    B. Dong, S. Wu, L. Zhang, Y. Wu, Ind. Eng. Chem. Res. 55, 4919–4929 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Zhan, M. Lavorgna, G. Buonocore, H. Xia, J. Mater. Chem. 22, 10464–10468 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Marlinda Ab Rahman
    • 1
    Email author
  • Goh Boon Tong
    • 2
  • Nurul Hazierah Kamaruddin
    • 1
  • Fadilah Abd Wahab
    • 1
  • Nor Aliya Hamizi
    • 1
  • Zaira Zaman Chowdhury
    • 1
  • Suresh Sagadevan
    • 1
  • Narong Chanlek
    • 3
  • Mohd Rafie Johan
    • 1
  1. 1.Nanotechnology and Catalysis Research CentreUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of Physics, Low Dimensional Materials Research CentreUniversity of MalayaKuala LumpurMalaysia
  3. 3.Synchrotron Light Research InstituteMuang, Nakhon RatchasimaThailand

Personalised recommendations