Synthesis of silver nanowires with controlled diameter and their conductive thin films

  • Shah Fahad
  • Haojie YuEmail author
  • Li WangEmail author
  • Ahsan Nazir
  • Raja Summe Ullah
  • Kaleem-ur-Rahman Naveed
  • Tarig Elshaarani
  • Bilal Ul Amin
  • Amin Khan
  • Sahid Mehmood


Silver nanowires (AgNWs) with high uniformity and controlled morphology were synthesized by employing silver nitrate as precursor and ethylene glycol as reducing agent and solvent. Polyvinyl pyrrolidone (PVP) was used as growth controlling agent and the synthetic process was carried out in salt free environment. The effect of reaction parameters like concentration of AgNO3 and the reaction temperature on the final morphology of AgNWs was studied. AgNWs obtained by changing different conditions were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), selected area electron diffraction pattern (SAED), X-ray diffraction (XRD) and UV–Vis spectroscopy. Synthesized AgNWs were coated on polyethylene terephthalate substrate by spin coating method to make thin conductive flexible film. The silver nanowires film was found to have a sheet resistance of 6.82 Ω/sq.


Compliance with ethical standards

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.


  1. 1.
    I. Hamberg, C.G. Granqvist, Evaporated Sn-doped In2O3 films-basic optical- preoperties and applications to energy-efficient windows. J. Appl. Phys. 60(11), 123–159 (1986)CrossRefGoogle Scholar
  2. 2.
    S. Wang, Y.H. Tian, S. Ding, C.Q. Wang, The role of chloride ions in rapid synthesis of ultra-long silver nanowires for flexible electrodes. Mater. Res. Express 3(7), 1–9 (2016)Google Scholar
  3. 3.
    D.D. Li, W.Y. Lai, Y.Z. Zhang, W. Huang, Printable transparent conductive films for flexible electronics. Adv. Mater. 30(10), 1–24 (2018)Google Scholar
  4. 4.
    Y.X. Jin, Y. Sun, K.Q. Wang, Y.N. Chen, Z.Q. Liang, Y.X. Xu, F. Xiao, Long-term stable silver nanowire transparent composite as bottom electrode for perovskite solar cells. Nano Res. 11(4), 1998–2011 (2018)CrossRefGoogle Scholar
  5. 5.
    L.L. Meng, R.X. Bian, C. Guo, B.J. Xu, H. Liu, L. Jiang, Aligning Ag nanowires by a facile bioinspired directional liquid transfer: toward anisotropic flexible conductive electrodes. Adv. Mater. 30(25), 1–9 (2018)Google Scholar
  6. 6.
    J.J. Chen, S.L. Liu, H.B. Wu, E. Sowade, R.R. Baumann, Y. Wang, F.Q. Gu, C.R.L. Liu, Z.S. Feng, Structural regulation of silver nanowires and their application in flexible electronic thin films. Mater. Des. 154, 266–274 (2018)CrossRefGoogle Scholar
  7. 7.
    Y.J. Jo, C. Kim, J.H. Lee, M.S. Ko, A. Jo, J.Y. Kim, W.G. Jung, N. Lee, Y.H. Kim, J. Kim, M.J. Lee, Development of patterned 1D metal nanowires with adhesion layer for mesh electrodes of flexible transparent conductive films for touch screen panels. J. Nanosci. Nanotechnol. 16(11), 11586–11590 (2016)CrossRefGoogle Scholar
  8. 8.
    D.R. Wang, Y.K. Zhang, X. Lu, Z.J. Ma, C. Xie, Z.J. Zheng, Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 47(12), 4611–4641 (2018)CrossRefGoogle Scholar
  9. 9.
    P.Q. Yang, J.M. Peng, Z.Y. Chu, D.F. Jiang, W.Q. Jin, Facile synthesis of prussian blue nanocubes/silver nanowires network as a water-based ink for the direct screen-printed flexible biosensor chips. Biosens. Bioelectron. 92, 709–717 (2017)CrossRefGoogle Scholar
  10. 10.
    D.P. Chen, X.L. Qiao, X.L. Qiu, J.G. Chen, R.Z. Jiang, Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. J. Colloid Interface Sci. 344(2), 286–291 (2010)CrossRefGoogle Scholar
  11. 11.
    B.S. Kim, J.B. Pyo, J.G. Son, G. Zi, S.S. Lee, J.H. Park, J. Lee, Biaxial stretchability and transparency of Ag nanowire 2D mass-spring networks prepared by floating compression. ACS Appl. Mater. Interfaces. 9(12), 10865–10873 (2017)CrossRefGoogle Scholar
  12. 12.
    D.B. Zhang, L.M. Qi, J.H. Yang, J.M. Ma, H.M. Cheng, L. Huang, Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem. Mat. 16(5), 872–876 (2004)CrossRefGoogle Scholar
  13. 13.
    K. Zhao, Q.F. Chang, X. Chen, B.C. Zhang, J.H. Liu, Synthesis and application of DNA-templated silver nanowires for ammonia gas sensing. Mater. Sci. Eng., C 29(4), 1191–1195 (2009)CrossRefGoogle Scholar
  14. 14.
    T.N. Trung, V.K. Arepalli, R. Gudala, E.T. Kim, Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films. Mater. Lett. 194, 66–69 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Fievet, Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 36(1–2), 133 (1989)Google Scholar
  16. 16.
    Y.G. Sun, B. Gates, B. Mayers, Y.N. Xia, Crystalline silver nanowires by soft solution processing. Nano Lett. 2(2), 165–168 (2002)CrossRefGoogle Scholar
  17. 17.
    M.B. Gebeyehu, T.F. Chala, S.Y. Chang, C.M. Wu, J.Y. Lee, Synthesis and highly effective purification of silver nanowires to enhance transmittance at low sheet resistance with simple polyol and scalable selective precipitation method. RSC Adv. 7(26), 16139–16148 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Nekahi, S.P.H. Marashi, D.H. Fatmesari, High yield polyol synthesis of round- and sharp-end silver nanowires with high aspect ratio. Mater. Chem. Phys. 184, 130–137 (2016)CrossRefGoogle Scholar
  19. 19.
    K.E. Korte, S.E. Skrabalak, Y.N. Xia, Rapid synthesis of silver nanowires through a CuCl or CuCl2 mediated polyol process. J. Mater. Chem. 18(4), 437–441 (2008)CrossRefGoogle Scholar
  20. 20.
    T. Abeywickrama, N.N. Sreeramulu, L. Xu, H. Rathnayake, A versatile method to prepare size and shape controlled copper nanocubes using an aqueous phase green synthesis. RSC Adv. 6(94), 91949–91955 (2016)CrossRefGoogle Scholar
  21. 21.
    C. Mayousse, C. Celle, E. Moreau, J.F. Mainguet, A. Carella, J.P. Simonato, Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors. Nanotechnology 24(21), 1–6 (2013)CrossRefGoogle Scholar
  22. 22.
    R.R. Da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P.H.C. Camargo, S.J.L. Ribeiro, Y. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 10(8), 7892–7900 (2016)CrossRefGoogle Scholar
  23. 23.
    Z.C. Li, T.M. Shang, Q.F. Zhou, K. Feng, Sodium chloride assisted synthesis of silver nanowires. Micro Nano Lett. 6(2), 90–93 (2011)CrossRefGoogle Scholar
  24. 24.
    S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 11(11), 4963–4969 (2011)CrossRefGoogle Scholar
  25. 25.
    S. Liu, B. Sun, J.-G. Li, J. Chen, Silver nanowires with rounded ends: ammonium carbonate-mediated polyol synthesis, shape evolution and growth mechanism. CrystEngComm 16(2), 244–251 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3(7), 955–960 (2003)CrossRefGoogle Scholar
  27. 27.
    W.H. Wu, H.Y. Chuang, S.L.C. Hsu, Synthesis and mechanism of template-free growth of silver nanowires via syringes. J. Mater. Res. 31(1), 109–116 (2016)CrossRefGoogle Scholar
  28. 28.
    C. Yang, Y.H. Tang, Z.J. Su, Z.X. Zhang, C. Fang, Preparation of silver nanowires via a rapid, scalable and green pathway. J. Mater. Sci. Technol. 31(1), 16–22 (2015)CrossRefGoogle Scholar
  29. 29.
    M.T. Satoungar, H. Azizi, S. Fattahi, M.K. Mehrizi, H. Fallahi, Effect of different mediated agents on morphology and crystallinity of synthesized silver nanowires prepared by polyol process. J. Nanomater. 2016, 8 (2016)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, Y. Zheng, C.Z. Huang, Y. Xia, Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 135(5), 1941–1951 (2013)CrossRefGoogle Scholar
  31. 31.
    H.D. Yun, D.M. Seo, M.Y. Lee, S.Y. Kwon, L.S. Park, Effective synthesis and recovery of silver nanowires prepared by tapered continuous flow reactor for flexible and transparent conducting electrode. Metals 6(1), 14 (2016)CrossRefGoogle Scholar
  32. 32.
    C. Jia, P. Yang, A. Zhang, Glycerol and ethylene glycol co-mediated synthesis of uniform multiple crystalline silver nanowires. Mater. Chem. Phys. 143(2), 794–800 (2014)CrossRefGoogle Scholar
  33. 33.
    Q.Q. Xu, Y.L. Ma, X. Gang, J.Z. Yin, A.Q. Wang, J.J. Gao, Comprehensive study of the role of ethylene glycol when preparing Ag@SBA-15 in supercritical CO2. J. Supercrit. Fluid 92, 100–106 (2014)CrossRefGoogle Scholar
  34. 34.
    S.E. Skrabalak, B.J. Wiley, M. Kim, E.V. Formo, Y.N. Xia, On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano Lett. 8(7), 2077–2081 (2008)CrossRefGoogle Scholar
  35. 35.
    Y.-J. Song, M. Wang, X.-Y. Zhang, J.-Y. Wu, T. Zhang, Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires. Nanoscale Res. Lett. 9(1), 1–17 (2014)CrossRefGoogle Scholar
  36. 36.
    J.-Y. Lin, Y.-L. Hsueh, J.-J. Huang, The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J. Solid State Chem. 214, 2–6 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Chen, L. Wang, G.H. Jiang, Q. Yang, J.J. Wang, H.J. Yu, T. Chen, C.L. Wang, X. Chen, The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process. Nanotechnology 17(2), 466–474 (2006)CrossRefGoogle Scholar
  38. 38.
    Y.G. Sun, Y.D. Yin, B.T. Mayers, T. Herricks, Y.N. Xia, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 14(11), 4736–4745 (2002)CrossRefGoogle Scholar
  39. 39.
    C.T. Pan, T.L. Yang, K.H. Hung, S.P. Ju, A parametric study on synthesis of Ag nanowires with high aspect ratio. J. Mater. Sci. 28(17), 12415–12424 (2017)Google Scholar
  40. 40.
    C. Chen, L. Wang, G. Jiang, J. Zhou, X. Chen, H. Yu, Q. Yang, Study on the synthesis of silver nanowires with adjustable diameters through the polyol process. Nanotechnology 17(15), 3933–3938 (2006)CrossRefGoogle Scholar
  41. 41.
    J. Song, Y.Q. Huang, Y.X. Fan, Z.H. Zhao, W.S. Yu, B.A. Rasco, K.Q. Lai, Detection of prohibited fish drugs using silver nanowires as substrate for surface-enhanced Raman scattering. Nanomaterials 6(9), 1–10 (2016)CrossRefGoogle Scholar
  42. 42.
    X. Ding, Y. Huang, Synthesis of silver nanowire and preparation of uniform, highly conductive transparent films on flexible substrate with extremely excellent film performance. J. Nanosci. Nanotechnol. 17(1), 705–710 (2017)CrossRefGoogle Scholar
  43. 43.
    Y.G. Sun, Y.N. Xia, Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14(11), 833–837 (2002)CrossRefGoogle Scholar
  44. 44.
    S. Fahad, H. Yu, L. Wang, Zain-ul-Abdin, M. Haroon, R.S. Ullah, A. Nazir, K.U.R. Naveed, T. Elshaarani, A. khan, Recent progress in the synthesis of silver nanowires and their role as conducting materials. J. Mater. Sci. 54(2), 997–1035 (2019)CrossRefGoogle Scholar
  45. 45.
    D. Li, T. Han, L. Zhang, H. Zhang, H. Chen, Flexible transparent electrodes based on silver nanowires synthesized via a simple method. R. Soc. Open Sci. 4(9), 7 (2017)CrossRefGoogle Scholar
  46. 46.
    C.Y. Liu, Y.S. Zhang, C.K. Kao, J.H. Liu, Fabrication of silver nanowires via a beta-cyclodextrin-derived soft template. Express Polym. Lett. 12(7), 591–599 (2018)CrossRefGoogle Scholar
  47. 47.
    J. Ma, M. Zhan, Rapid production of silver nanowires based on high concentration of AgNO3 precursor and use of FeCl3 as reaction promoter. RSC Adv. 4(40), 21060–21071 (2014)CrossRefGoogle Scholar
  48. 48.
    M. Tsuji, X.L. Tang, M. Matsunaga, Y. Maeda, M. Watanabe, Shape evolution of flag types of silver nanostructures from nanorod seeds in PVP-assisted DMF solution. Cryst. Growth Des. 10(12), 5238–5243 (2010)CrossRefGoogle Scholar
  49. 49.
    J.H. Kim, B.R. Min, C.K. Kim, J. Won, Y.S. Kang, Spectroscopic interpretation of silver ion complexation with propylene in silver polymer electrolytes. J. Phys. Chem. B 106(10), 2786–2790 (2002)CrossRefGoogle Scholar
  50. 50.
    Y. Gao, P. Jiang, D.F. Liu, H.J. Yuan, X.Q. Yan, Z.P. Zhou, J.X. Wang, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, C.Y. Wang, S.S. Xie, J.M. Zhang, A.Y. Shen, Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. J. Phys. Chem. B 108(34), 12877–12881 (2004)CrossRefGoogle Scholar
  51. 51.
    Z. Deng, L. Wang, H. Yu, X. Zhai, Y. Chen, Noncovalent dispersion of multi-walled carbon nanotubes with poly(tert-butyl methacrylate) modified hyperbranched polyethylene for flexible conductive films. RSC Adv. 6(78), 74209–74214 (2016)CrossRefGoogle Scholar
  52. 52.
    H. Wu, L.B. Hu, M.W. Rowell, D.S. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y.A. Yang, M.D. McGehee, Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett. 10(10), 4242–4248 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations