Advertisement

Bonding performance of sintered nanosilver joints on bare copper substrates with different grain structures

  • Cheng-Jie Du
  • Xin LiEmail author
  • Yun-Hui Mei
  • Guo-Quan Lu
Article

Abstract

Nanosilver paste as a state-of-the-art die-attach material for power electronics has been widely used in bare copper bonding. In this paper, bonding performance of sintered nanosilver joints on bare copper substrates with different grain structures was investigated. The bare copper joint with optimum bonding performance was obtained with copper substrate possessing smallest grain size (1.88 μm), strongest (001) texture and largest surface roughness (750.31 nm). It was thought copper substrate with smaller grain size provided more grain boundaries to facilitate the diffusion rate of Ag atoms on the surface of copper substrate and into the substrate, further leading to the greater contact area and longer inter-diffusion band to achieve stronger interfacial bonding. Meanwhile, faster diffusion at the interface did not interfere with the densification of sintered Ag layer. Therefore, the stronger interfacial bonding and well-densified Ag layer strengthened the sintered joint. It was also found (001) orientation could possibly be the most contributing to bonding strength, since the decrease of relative texture coefficient of (200) coincided with the reduced strength. Besides, rougher surface of copper substrate with smaller grain size after polishing could be another factor to improve bonding strength due to the larger contact area and mechanical interlocking.

Notes

Acknowledgements

The authors would like to gratefully acknowledge the financial supports from the National Natural Science Foundation of China (No. 51401145) and the National High Technology Research and Development Program of China (No. 2016YFB0100602).

References

  1. 1.
    R. Lai, F. Wang, P. Ning, D. Zhang, D. Jiang, R. Burgos, D. Boroyevich, K.J. Karimi, V.D. Immanuel, In: 2009 13th European Conference on Power Electronics and Applications, (2009), pp. 1–12Google Scholar
  2. 2.
    C. Buttay, D. Planson, B. Allard, D. Bergogne, P. Bevilacqua, C. Joubert, M. Lazar, C. Martin, H. Morel, D. Tournier, Mater. Sci. Eng. B 176, 283 (2011)CrossRefGoogle Scholar
  3. 3.
    Y. Yamada, Y. Takaku, Y. Yagi, I. Nakagawa, T. Atsumi, M. Shirai, I. Ohnuma, K. Ishida, Microelectron. Reliab. 47, 2147 (2007)CrossRefGoogle Scholar
  4. 4.
    J.G. Bai, G.Q. Lu, I.E.E.E. Trans, Device Mater. Reliab. 6, 436 (2006)CrossRefGoogle Scholar
  5. 5.
    Z. Zhang, G.Q. Lu, I.E.E.E. Trans, Electron. Packag. Manuf. 25, 279 (2003)CrossRefGoogle Scholar
  6. 6.
    F. Yang, B. Hu, Y. Peng, C. Hang, H. Chen, C. Lee, J. Wei, M. Li, J. Mater. Sci.: Mater. Electron. 30, 5526 (2019)Google Scholar
  7. 7.
    K.S. Siow, S.T. Chua, B.D. Beake, A.S. Zuruzi, J. Mater. Sci.: Mater. Electron. 30, 6212 (2019)Google Scholar
  8. 8.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Acta Mater. 53, 2385 (2005)CrossRefGoogle Scholar
  9. 9.
    Q. Jiang, S.H. Zhang, J.C. Li, Solid State Commun. 130, 581 (2004)CrossRefGoogle Scholar
  10. 10.
    K.S. Siow, J. Alloys Compd. 514, 6 (2012)CrossRefGoogle Scholar
  11. 11.
    C. Chen, K. Suganuma, T. Iwashige, K. Sugiura, K. Tsuruta, J. Mater. Sci.: Mater. Electron. 29, 1785 (2018)Google Scholar
  12. 12.
    Y. Akada, H. Tatsumi, T. Yamaguchi, A. Hirose, T. Morita, E. Ide, Mater. Trans. 49, 1537 (2008)CrossRefGoogle Scholar
  13. 13.
    S.A. Paknejad, G. Dumas, G. West, G. Lewis, S.H. Mannan, J. Alloys Compd. 617, 994 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Ogura, S. Takata, M. Takahashi, A. Hirose, Mater. Trans. 56, 1030 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Zheng, D. Berry, K.D.T. Ngo, G.Q. Lu, I.E.E.E. Trans, Compon. Packag. Manuf. Technol. 4, 377 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Li, X. Li, L. Wang, Y.-H. Mei, G.-Q. Lu, Mater. Des. 140, 64 (2018)CrossRefGoogle Scholar
  17. 17.
    W.-H. Li, P.-S. Lin, C.-N. Chen, T.-Y. Dong, C.-H. Tsai, W.-T. Kung, J.-M. Song, Y.-T. Chiu, P.-F. Yang, Mater. Sci. Eng. A 613, 372 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Xu, Y. Mei, X. Li, G.Q. Lu, J. Alloys Compd. 675, 317 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Wang, Y. Mei, X. Li, M. Wang, Z. Cui, G.-Q. Lu, J. Alloys Compd. 777, 578 (2019)CrossRefGoogle Scholar
  20. 20.
    T. Fan, H. Zhang, P. Shang, C. Li, C. Chen, J. Wang, Z. Liu, H. Zhang, K. Suganuma, J. Alloys Compd. 731, 1280 (2018)CrossRefGoogle Scholar
  21. 21.
    M. Wang, Y. Mei, X. Li, R. Burgos, D. Boroyevich, G.Q. Lu, Mater. Lett. 228, 327 (2018)CrossRefGoogle Scholar
  22. 22.
    S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, J. Mater. Sci.: Mater. Electron. 27, 1 (2016)Google Scholar
  23. 23.
    D.B. Butrymowicz, J.R. Manning, M.E. Read, J. Phys. Chem. Ref. Data 2, 643 (1973)CrossRefGoogle Scholar
  24. 24.
    W.C. Mallard, A.B. Gardner, R.F. Bass, L.M. Slifkin, Phys. Rev. 129, 617 (1963)CrossRefGoogle Scholar
  25. 25.
    D.B. Butrymowicz, J.R. Manning, M.E. Read, J. Phys. Chem. Ref. Data 3, 527 (1974)CrossRefGoogle Scholar
  26. 26.
    G.T. Lui, D. Chen, J.C. Kuo, J. Phys. D Appl. Phys. 42, 215410 (2009)CrossRefGoogle Scholar
  27. 27.
    H. Matsushima, A. Bund, W. Plieth, S. Kikuchi, Y. Fukunaka, Electrochim. Acta 53, 161 (2007)CrossRefGoogle Scholar
  28. 28.
    M. Yeadon, J.C. Yang, R.S. Averback, J.W. Bullard, J.M. Gibson, Nanostruct. Mater. 10, 731 (1998)CrossRefGoogle Scholar
  29. 29.
    M. Yeadon, M. Ghaly, J.C. Yang, R.S. Averback, J.M. Gibson, Appl. Phys. Lett. 73, 3208 (1998)CrossRefGoogle Scholar
  30. 30.
    L.A. Navarro, X. Perpina, P. Godignon, J. Montserrat, V. Banu, M. Vellvehi, X. Jorda, I.E.E.E. Trans, Power Electron. 29, 2261 (2014)CrossRefGoogle Scholar
  31. 31.
    A.A. Wereszczak, D.J. Vuono, Z. Liang, E.E. Fox, In: 2012 7th International Conference on Integrated Power Electronics System (2012), pp. 1–6Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Material Science and Engineering, Tianjin Key Laboratory of Advanced Joining TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Department of Material Science and EngineeringVirginia TechBlacksburgUSA

Personalised recommendations