Effect of growth temperature on the photovoltaic characteristics of thermal chemical vapor deposited MoS2 layers grown on p-type Si

Abstract

In this work, MoS2 layers were grown on the silicon substrates using thermal chemical vapor deposition at different growth temperatures. This method was done by simultaneous evaporating of MoO3 and sulfur powders as precursors at one-step process. The structural properties of the samples were assessed by X-ray diffraction patterns which confirmed the formation of hexagonal MoS2 structures (2H-MoS2). The surface morphology and the thickness of the grown layer were determined by field emission scanning electron microscopy. Moreover, UV–Vis and Raman spectroscopy were applied to confirm the formation of the few layer MoS2 structures. Furthermore, the sheet resistance measurements were carried out to evaluate the resistivity of the obtained layers. In addition, the photovoltaic characteristics of the MoS2 layers grown on p-type Si as p–n junction with Ag (top) and Al (back) contacts were assessed under illumination of sun light simulator.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    J.M.H. Bai, W. Zhao, Y. Yuan, K. Zhang, Sol. Energy 160, 76 (2018)

    Article  Google Scholar 

  2. 2.

    M.Y. Li, C.H. Chen, Y. Shi, L.J. Li, Mater. Today 19, 322 (2016)

    Article  Google Scholar 

  3. 3.

    F. Giannazzo, G. Fisichella, A. Piazza, S. Di Franco, I.P. Oliveri, S. Agnello, F. Roccaforte, Mater. Sci. Semicond. Process. 42, 174 (2016)

    Article  Google Scholar 

  4. 4.

    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271 (2010)

    Article  Google Scholar 

  5. 5.

    L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, W. Zhang, J. Appl. Phys. (2015). https://doi.org/10.1063/1.4915951

    Google Scholar 

  6. 6.

    S. Sutar, P. Agnihotri, E. Comfort, T. Taniguchi, K. Watanabe, J.U. Lee, Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4870067

    Google Scholar 

  7. 7.

    Y. Tsuboi, F. Wang, D. Kozawa, K. Funahashi, S. Mouri, Y. Miyauchi, T. Takenobu, K. Matsuda, Nanoscale 7, 14476 (2015)

    Article  Google Scholar 

  8. 8.

    M.W. Lin, L. Liu, Q. Lan, X. Tan, K.S. Dhindsa, P. Zeng, V.M. Naik, M.M.C. Cheng, Z. Zhou, J. Phys. D (2012). https://doi.org/10.1088/0022-3727/45/34/345102

    Google Scholar 

  9. 9.

    M.M. Furchi, A.A. Zechmeister, F. Hoeller, S. Wachter, A. Pospischil, T. Mueller, IEEE J. Sel. Top. Quantum Electron. (2015). https://doi.org/10.1109/JSTQE.2016.2582318

    Google Scholar 

  10. 10.

    Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012)

    Article  Google Scholar 

  11. 11.

    H. Liu, Y. Zhu, Q. Meng, X. Lu, S. Kong, Z. Huang, P. Jiang, X. Bao, Nano Res. 10, 643 (2016)

    Article  Google Scholar 

  12. 12.

    V. Kaushik, D. Varandani, B.R. Mehta, J. Phys. Chem. 119, 20136 (2015)

    Google Scholar 

  13. 13.

    G. Siegel, Y.P.V. Subbaiah, M.C. Prestgard, A. Tiwaria, APL. Mater. (2015). https://doi.org/10.1063/1.4921580

    Google Scholar 

  14. 14.

    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nano. Technol. 7, 699 (2012)

    Article  Google Scholar 

  15. 15.

    C.P. Veeramalai, F. Li, Y. Liu, Z. Xu, T. Guo, T.W. Kim, Appl. Surf. Sci. 389, 1017 (2016)

    Article  Google Scholar 

  16. 16.

    B. Visic, R. Dominko, M.K. Gunde, N. Hauptman, S.D. Skapin, M. Remskar, Nanoscale Res. Lett. (2011). https://doi.org/10.1186/1556-276X-6-593

    Google Scholar 

  17. 17.

    C.N.R. Rao, U. Maitra, U.V. Waghmare, Chem. Phys. Lett. 609, 172 (2014)

    Article  Google Scholar 

  18. 18.

    Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P.H. Tan, M. Kan, J. Feng, Q. Sun, Z. Liu, Nano Lett. 13, 3870 (2013)

    Article  Google Scholar 

  19. 19.

    S. Lee, A. Tang, S. Aloni, H.S.P. Wong, Nano Lett. 16, 276 (2016)

    Article  Google Scholar 

  20. 20.

    H. Liu, M. Si, S. Najmaei, A.T. Neal, Y. Du, P.M. Ajayan, J. Lou, P.D. Ye, Nano Lett. 13, 2640 (2013)

    Article  Google Scholar 

  21. 21.

    A. Zafar, H. Nan, Z. Zafar, Z. Wu, J. Jiang, Y. You, Z. Ni, Nano Res. 10, 1608 (2016)

    Article  Google Scholar 

  22. 22.

    B. Rahmati, I. Hajzadeh, R. Karimzadeh, S.M. Mohseni, Appl. Surf. Sci. 455, 876 (2018)

    Article  Google Scholar 

  23. 23.

    M. Bernardi, M. Palummo, J.C. Grossman, Nano Lett. 13, 3664 (2013)

    Article  Google Scholar 

  24. 24.

    X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Nat. Nanotechnol. 9, 682 (2014)

    Article  Google Scholar 

  25. 25.

    S. Walia, S. Balendhran, Y. Wang, R.A. Kadir, A.S. Zoolfakar, P. Atkin, J.Z. Ou, S. Sriram, K. Kalantar-zadeh, M. Bhaskaran, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4840317

    Google Scholar 

  26. 26.

    Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, P.D. Ye, ACS Nano 8, 8292 (2014)

    Article  Google Scholar 

  27. 27.

    B.J. Robinson, C.E. Giusca, Y.T. Gonzalez, N.D. Kay, O. Kazakova, O.V. Kolosov, 2D Mater. (2015). https://doi.org/10.1088/2053-1583/2/1/015005

    Google Scholar 

  28. 28.

    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)

    Article  Google Scholar 

  29. 29.

    H. Lin, J. Wang, Q. Luo, H. Peng, C. Luo, R. Qi, R. Huang, J. Travas-Sejdicb, C.G. Duan, J. Alloys Compd. 699, 222 (2017)

    Article  Google Scholar 

  30. 30.

    W. Wang, X. Zeng, S. Wu, Y. Zeng, Y. Hu, J. Ding, S. Xu, J. Phys. D (2017). https://doi.org/10.1088/1361-6463/aa81ae

    Google Scholar 

  31. 31.

    S. Bayesteh, S.Z. Mortazavi, A. Reyhani, J. Phys. D (2018). https://doi.org/10.1088/1361-6463/aab808

    Google Scholar 

  32. 32.

    C.R. Wu, X.R. Chang, S.W. Chang, C.E. Chang, C.H. Wu, S.Y. Lin, J. Phys. D (2015). https://doi.org/10.1088/0022-3727/48/43/435101

    Google Scholar 

  33. 33.

    J. Shan, J. Li, X. Chu, M. Xu, F. Jin, X. Fang, Z. Wei, X. Wang, Appl. Surf. Sci. 443, 31 (2018)

    Article  Google Scholar 

  34. 34.

    C.M. Hyun, J.H. Choi, S.W. Leea, J.H. Park, K.T. Lee, J.H. Ahn, J. Alloys Compd. 765, 380 (2018)

    Article  Google Scholar 

  35. 35.

    K. Matsuura, T. Ohashi, I. Munetta, S. Ishihara, K. Kakushima, K. Tsutsui, A. Ogura, H. Wakabayashi, J. Electron. Mater. 47, 3497 (2018)

    Article  Google Scholar 

  36. 36.

    J.H. Huang, H.H. Chen, P.S. Liu, L.S. Lu, C.T. Wu, C.T. Chou, Y.J. Lee, L.J. Li, W.H. Chang, T.H. Hou, Mater. Res. Express (2016). https://doi.org/10.1088/2053-1591/3/6/065007

    Google Scholar 

  37. 37.

    M.A. Nikpay, S.Z. Mortazavi, A. Reyhani, S.M. Elahi, Mater. Res. Express. (2018). https://doi.org/10.1088/2053-1591/aaa22d

    Google Scholar 

  38. 38.

    P. Fallahazad, N. Naderi, M.J. Eshraghi, A. Massoudi, J. Mater. Sci. 29, 6289 (2018)

    Google Scholar 

  39. 39.

    S. Hussain, M.A. Shehzad, D. Vikraman, M.Z. Iqbal, J. Singh, M.F. Khan, J. Eom, Y. Seo, J. Jung, J. Alloys Compd. 653, 369 (2015)

    Article  Google Scholar 

  40. 40.

    S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, K. Kalantar-zadeh, Nanoscale 4, 461 (2012)

    Article  Google Scholar 

  41. 41.

    S.H. Baek, Y. Choi, W. Choi, Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-1094-x

    Google Scholar 

  42. 42.

    A.R. Klots, A.K.M. Newaz, B. Wang, D. Prasai, H. Krzyzanowska, J. Lin, D. Caudel, N.J. Ghimire, J. Yan, B.L. Ivanov, K.A. Velizhanin, A. Burger, D.G. Mandrus, N.H. Tolk, S.T. Pantelides, K.I. Bolotin, Sci. Rep. (2014). https://doi.org/10.1038/srep06608

    Google Scholar 

  43. 43.

    T. Goto, Y. Kato, K. Uchida, N. Miura, J. Phys. (2000). https://doi.org/10.1088/0953-8984/12/30/304

    Google Scholar 

  44. 44.

    M. Ye, D. Winslow, D. Zhang, R. Pandey, Y.K. Yap, Photonics. 2, 288 (2015)

    Article  Google Scholar 

  45. 45.

    A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B. (2011). https://doi.org/10.1103/PhysRevB.84.205325

    Google Scholar 

  46. 46.

    P.D. Krishna, L.D. Dinh, L. Jubok, N. Honggi, K. Minsu, K. Min, H.L. Young, K. Jeongyong, Nanoscale 6, 13028 (2014)

    Article  Google Scholar 

  47. 47.

    X. Liu, J. He, Q. Liu, D. Tang, J. Wen, W. Liu, W. Yu, J. Wu, Z. He, Y. Lu, D. Zhu, W. Liu, P. Cao, S. Han, K.W. Ang, J. Appl. Phys. (2015). https://doi.org/10.1063/1.4931617

    Google Scholar 

  48. 48.

    N.K. Perkgoz, M. Bay, Nano-Micro Lett. 8, 70 (2015)

    Article  Google Scholar 

  49. 49.

    H. Li, Q. Zhang, C.C. Ray Yap, B.K. Tay, T.H. Tong Edwin, A. Olivier, D. Baillargeat, Adv. Funct. Mater. 22, 1385 (2012)

    Article  Google Scholar 

  50. 50.

    S.L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, K. Tsukagoshi, ACS Nano 6, 7381 (2012)

    Article  Google Scholar 

  51. 51.

    S. Wang, H. Yu, H. Zhang, A. Wang, M. Zhao, Y. Chen, L. Mei, J. Wang, Adv. Mater. 26, 3538 (2014)

    Article  Google Scholar 

  52. 52.

    T. Weber, J.C. Muijsers, J.H.C.V. Wolput, C.P.J. Verhagen, J.W. Niemantsverdriet, J. Phys. Chem. 100, 14144 (1996)

    Article  Google Scholar 

  53. 53.

    S. Bae, H. Kim, Y. Lee, X. Xu, J. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)

    Article  Google Scholar 

  54. 54.

    W.U. Huynh, J.J. Dittmer, N. Teclemariam, D.J. Milliron, A.P. Alivisatos, K.W. Barnham, Phys. Rev. B. (2003). https://doi.org/10.1103/PhysRevB.67.115326

    Google Scholar 

  55. 55.

    K. Mertens, Photovoltaics: Fundamentals, Technology and Practice (Wiley, New York, 2013)

    Google Scholar 

  56. 56.

    A. Gholizadeh, A. Reyhani, P. Parvin, S.Z. Mortazavi, J. Phys. D (2017). https://doi.org/10.1088/1361-6463/aa6454

    Google Scholar 

  57. 57.

    E. Singh, K.S. Kim, G.Y. Yeom, H.S. Nalwa, A.C.S. Appl, Mater. Interfaces 9, 3223 (2017)

    Article  Google Scholar 

  58. 58.

    S.L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.W. Li, Y.F. Lin, A. Aparecido-Ferreira, K. Tsukagoshi, Nano Lett. 13, 3546 (2013)

    Article  Google Scholar 

  59. 59.

    S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2013)

    Article  Google Scholar 

  60. 60.

    J. Zheng, X. Yan, Z. Lu, H. Qiu, G. Xu, X. Zhou, P. Wang, X. Pan, K. Liu, L. Jiao, Adv. Mater. (2017). https://doi.org/10.1002/adma.201604540

    Google Scholar 

  61. 61.

    M. Shanmugam, C.A. Durcan, B. Yu, Nanoscale 4, 7399 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Iran Science Elites Federation under Grant 11/66332 dated 2015/05/20, and the Research Council of Imam Khomeini International University, and special appreciation from Dr. Nima Naderi for kind cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seyedeh Zahra Mortazavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikpay, M.A., Mortazavi, S.Z., Reyhani, A. et al. Effect of growth temperature on the photovoltaic characteristics of thermal chemical vapor deposited MoS2 layers grown on p-type Si. J Mater Sci: Mater Electron 30, 11542–11551 (2019). https://doi.org/10.1007/s10854-019-01511-w

Download citation