A study based on MgAl2O4–LaCrO3 composite ceramics for high temperature NTC thermistors


The effects of the sintering process on the microstructure and high temperature electrical properties of xMgAl2O4–(1 − x)LaCrO3 (x = 0.3, 0.4, 0.5) composite ceramics were investigated. X-ray diffraction (XRD) results show that all the composite ceramic samples are composed of the spinel oxide MgAl2O4 phase and orthogonal perovskite structure LaCrO3 phase, and no impurities appear. The grain size of the vacuum sintered ceramic is smaller, resulting in an increase in electrical resistance. X-ray photoelectron spectroscopy confirmed the presence of Cr3+ and Cr 4+ ions at the lattice sites. The EDS results show that the vacuum sintered ceramic has more Cr content due to the smaller oxygen partial pressure during vacuum sintering. The activation energy of the vacuum sintered sample is higher than the activation energy of the conventional sintered sample. All the composite ceramic samples have negative temperature coefficient characteristics and the resistivity increases with the increase of MgAl2O4 content.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    H. Yokokawa, N. Sakai, T. Kawada, M. Kokiya, J. Electron. Soc. 138, 1018 (1991)

    Article  Google Scholar 

  2. 2.

    O.I. Klyushnikov, V.V. Sal’nikov, N.M. Bogdanovich, J. Inorg. Mater. 38, 265 (2002)

    Article  Google Scholar 

  3. 3.

    T. Tachiwaki, Y. Kunifusa, M. Yoshinaka, K. Hirota, O. Yamaguchi, Mater. Sci. Eng. B 86, 255 (2001)

    Article  Google Scholar 

  4. 4.

    A. Feltz, J. Eur. Ceram. Soc. 20, 2367 (2000)

    Article  Google Scholar 

  5. 5.

    D. Houivet, J. Bernard, J.-M. Haussonne, J. Eur. Ceram. Soc. 24, 1237 (2004)

    Article  Google Scholar 

  6. 6.

    Y. Jiang, J. Gao, M. Liu, Y. Wang, G. Meng, Mater. Lett. 61, 1908 (2007)

    Article  Google Scholar 

  7. 7.

    I.-H. Jung, S. Decterov, A.D. Pelton, J. Am. Ceram. Soc. 88, 1921 (2005)

    Article  Google Scholar 

  8. 8.

    A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, J. Eur. Ceram. Soc. 31, 1457 (2011)

    Article  Google Scholar 

  9. 9.

    A. Kumar, M.L. Singla, A. Kumar, J.K. Rajput, J. Mater. Sci.: Mater. Electron. 26, 1838 (2014)

    Google Scholar 

  10. 10.

    Y. Luo, X. Liu, X. Li, J. Mater. Sci.: Mater. Electron. 17, 909 (2006)

    Google Scholar 

  11. 11.

    J. Park, Ceram. Int. 41, 6386 (2015)

    Article  Google Scholar 

  12. 12.

    K. Park, J.K. Lee, J. Alloys Compd. 475, 513 (2009)

    Article  Google Scholar 

  13. 13.

    K. Park, J.K. Lee, S.J. Kim, W.S. Seo, W.S. Cho, C.W. Lee, S. Nahm, J. Alloys Compd. 467, 310 (2009)

    Article  Google Scholar 

  14. 14.

    K. Park, S.J. Yun, Mater. Lett. 58, 933 (2004)

    Article  Google Scholar 

  15. 15.

    B. Zhang, Q. Zhao, A. Chang, Y. Li, Y. Liu, Y. Wu, J. Eur. Ceram. Soc. 34, 2989 (2014)

    Article  Google Scholar 

  16. 16.

    B. Zhang, Q. Zhao, C. Zhao, A. Chang, J. Alloys Compd. 698, 1 (2017)

    Article  Google Scholar 

Download references


This study was supported by the National Natural Science Foundation of China (Grant No. 61671447), Tianshan Talent Project of Xinjiang Autonomous Region and the Scientific and Technological Talents Training Project of the Xinjiang Autonomous Region (Grant No. QN2016YX0161).

Author information



Corresponding authors

Correspondence to Qing Zhao or Aimin Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ga, A., Yin, X., Zhao, Q. et al. A study based on MgAl2O4–LaCrO3 composite ceramics for high temperature NTC thermistors. J Mater Sci: Mater Electron 30, 11117–11122 (2019). https://doi.org/10.1007/s10854-019-01454-2

Download citation