Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods

Abstract

We report a strategy to fabricate high quality TiO2 nanrod array ETLs for efficient PSC devices with Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 triple cation composition perovskite as light absorption material. Mg doped compact TiO2 (c-TiO2) was employed as seeds for hydrothermal growth of one-dimensional (1D) TiO2 nanorod (NR) arrays. Assisted with these seed layers, Mg and Er doped TiO2 rutile NR arrays were synthesized using tetrabutyltitanate (TBT) and Er(NO3)3 as Ti and Er precursors, respectively. It was found that uniform, straight and vertical TiO2 NRs with a high area density were formed using Mg and Er co-modification, improving the pore-filling and crystallization of the triple cation perovskites, facilitating charge separation and suppressing recombination at the perovskite/titania NR interface of the PSC device. The shorter PL decay time with Mg/Er doping compared to the cases without Mg or Er doping is assigned to the more excellent electron extraction from the mixed cation perovskite film. The control device without modification shows an average power conversion efficiency (PCE) of 17.10%. Under the same fabrication conditions, doping of the single element Er or Mg or both Mg and Er enhances the average PCE to 17.54, 18.41 and 18.99% respectively. Our champion cell based on Mg/Er modified TiO2 NR arrays demonstrates a PCE of 19.11%, exhibiting an enhancement of 10.33% compared with that of the PSCs based on unmodified TiO2 NR arrays (17.32%). This work provides a simple and efficient interface engineering method to improve the efficiency of the mixed cation PSCs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. 2.

    National Renewable Energy Laboratory (NREL) (2019), https://www.nrel.gov/pv/assets/images/effciency-chart.png. Accessed April 2019

  3. 3.

    M. Afzaal, H.M. Yates, A. Walter, S. Nicolay, C. Ballif, J. Mater. Chem. C 5, 4946–4950 (2017)

    Article  Google Scholar 

  4. 4.

    M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho-Baillie, Prog. Photovolt. 26, 427 (2018)

    Article  Google Scholar 

  5. 5.

    J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, S.M. Huang, Prog. Photovolt. 19, 160 (2011)

    Article  Google Scholar 

  6. 6.

    H.S. Jun, N.G. park, Small 11, 10 (2015)

    Article  Google Scholar 

  7. 7.

    M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014)

    Article  Google Scholar 

  8. 8.

    M.M. Lee, T. Joël, M. Tsutomu, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    Article  Google Scholar 

  9. 9.

    C. Zhang, Y. Luo, X. Chen, Y. Chen, Z. Sun, S. Huang, Nano-Micro Lett. 8, 347 (2016)

    Article  Google Scholar 

  10. 10.

    M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, Energy Environ. Sci. 9, 1989 (2016)

    Article  Google Scholar 

  11. 11.

    Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, S. Huang, ACS Appl. Mater. Inter. 9, 34821 (2017)

    Article  Google Scholar 

  12. 12.

    X. Feng, K. Zhu, A.J. Frank, C.A. Grimes, T.E. Mallouk, Angew. Chem. 124, 2781 (2012)

    Article  Google Scholar 

  13. 13.

    J. Qiu, Y. Qiu, K. Yan, M. Zhong, M. Cheng, H. Yan, S. Yang, Nanoscale 5, 3245 (2013)

    Article  Google Scholar 

  14. 14.

    J. Choi, S. Song, M.T. Hörantner, H.J. Snaith, T. Park, ACS Nano 10, 6029 (2016)

    Article  Google Scholar 

  15. 15.

    C. Liu, R. Zhu, A. Ng, Z. Ren, S.H. Cheung, L. Du, S.K. So, J.A. Zapien, A.B. Djurišić, D.L. Phillips, J. Mater. Chem. A 5, 15970 (2017)

    Article  Google Scholar 

  16. 16.

    K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, J. Mater. Chem. A 3, 9051 (2015)

    Article  Google Scholar 

  17. 17.

    K. Mahmood, B.S. Swain, A. Amassian, Adv. Energy Mater. 5, 1500568 (2015)

    Article  Google Scholar 

  18. 18.

    Z. Gu, F. Chen, X. Zhang, Y. Liu, C. Fan, G. Wu, H. Li, H. Chen, Sol. Energy Mater. Sol. Cells 140, 396 (2015)

    Article  Google Scholar 

  19. 19.

    Y.B. Cheng, W.Q. Wu, D. Chen, R. Caruso, J. Mater. Chem. A 5, 10092 (2017)

    Article  Google Scholar 

  20. 20.

    C. Zhang, X. Deng, J. Zheng, X. Zhou, J. Shi, X. Chen, Z. Sun, S. Huang, Electrochim. Acta 283, 1134 (2018)

    Article  Google Scholar 

  21. 21.

    P. Strange, A. Svane, W.M. Temmerman, Z. Szotek, H. Winter, Nature 399, 756 (1999)

    Article  Google Scholar 

  22. 22.

    H. Hoda, W. Jihuai, L. Zhang, L. Qinghua, X. Guixiang, L. Jianming, H. Miaoliang, H. Yunfang, M.S. Abdel-Mottaleb, Nanotechnology 21, 415201 (2010)

    Article  Google Scholar 

  23. 23.

    L. Jing, X. Sun, B. Xin, B. Wang, W. Cai, H. Fu, J. Solid State Chem. 177, 3375 (2004)

    Article  Google Scholar 

  24. 24.

    C.P. Sibu, S.R. Kumar, P. Mukundan, K.G.K. Warrier, Chem. Mater. 14, 2876 (2002)

    Article  Google Scholar 

  25. 25.

    S. Yahav, S. Rühle, S. Greenwald, H.N. Barad, M. Shalom, A. Zaban, J. Phys. Chem. C 115, 21481 (2011)

    Article  Google Scholar 

  26. 26.

    B. Choudhury, B. Borah, A. Choudhury, Mat. Sci. Eng. B 178, 239 (2013)

    Article  Google Scholar 

  27. 27.

    P. Qin, A.L. Domanski, A.K. Chandiran, R. Berger, H.-J. Butt, M.I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M.K. Nazeeruddin, M. Grätzel, Nanoscale 6, 1508 (2014)

    Article  Google Scholar 

  28. 28.

    B. Roose, K.C. Gödel, S. Pathak, A. Sadhanala, J.P.C. Baena, B.D. Wilts, H.J. Snaith, U. Wiesner, M. Grätzel, U. Steiner, Adv. Energy Mater. 6, 1501868 (2016)

    Article  Google Scholar 

  29. 29.

    Q. Cui, X. Zhao, H. Lin, L. Yang, H. Chen, Y. Zhang, X. Li, Nanoscale 9, 18897 (2017)

    Article  Google Scholar 

  30. 30.

    Y. Zhang, G. Grancini, Y. Feng, A.M. Asiri, M.K. Nazeeruddin, ACS Energy Lett. 2, 802 (2017)

    Article  Google Scholar 

  31. 31.

    J.F. Li, Z.L. Zhang, H.P. Gao, Y. Zhang, Y.L. Mao, J. Mater. Chem. A 3, 19476 (2015)

    Article  Google Scholar 

  32. 32.

    C. Zhang, Q. Luo, J. Shi, L. Yue, Z. Wang, X. Chen, S. Huang, Nanoscale 9, 2852 (2017)

    Article  Google Scholar 

  33. 33.

    F. Giordano, A. Abate, J.P.C. Baena, M. Saliba, T. Matsui, H.I. Sang, S.M. Zakeeruddin, M.K. Nazeeruddin, A. Hagfeldt, M. Grätzel, Nat. Commun. 7, 10379 (2016)

    Article  Google Scholar 

  34. 34.

    C. Zhang, Y. Luo, X. Chen, O.Y. Wei, Y. Chen, Z. Sun, S. Huang, Appl. Surf. Sci. 388, 82 (2016)

    Article  Google Scholar 

  35. 35.

    M. Liu, M. Jia, H. Pan, L. Li, M. Chang, H. Ren, F. Argoul, S. Zhang, J. Xu, Appl. Spectrosc. 68, 577 (2014)

    Article  Google Scholar 

  36. 36.

    B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009)

    Article  Google Scholar 

  37. 37.

    I.S. Cho, Z. Chen, A.J. Forman, D.R. Kim, P.M. Rao, T.F. Jaramillo, X. Zheng, Nano Lett. 11, 4978 (2011)

    Article  Google Scholar 

  38. 38.

    A. Kumar, A.R. Madaria, C. Zhou, J. Phys. Chem. C 114, 7787 (2010)

    Article  Google Scholar 

  39. 39.

    J. Cai, J. Ye, S. Chen, X. Zhao, D. Zhang, S. Chen, Y. Ma, S. Jin, L. Qi, Energy Environ. Sci. 5, 7575 (2012)

    Article  Google Scholar 

  40. 40.

    Q. Jiang, X. Sheng, Y. Li, X. Feng, T. Xu, Chem. Commun. 50, 14720 (2014)

    Article  Google Scholar 

  41. 41.

    S.S. Mali, S.S. Chang, K.P. Hui, J. Heo, K.H. Chang, Chem. Mater. 27, 1541 (2015)

    Article  Google Scholar 

  42. 42.

    X. Li, S.M. Dai, P. Zhu, L.L. Deng, S.Y. Xie, Q. Cui, H. Chen, N. Wang, H. Lin, ACS. Appl. Mater. Inter. 8, 21358 (2016)

    Article  Google Scholar 

  43. 43.

    A. Kulkarni, A.K. Jena, H.W. Chen, Y. Sanehira, M. Ikegami, T. Miyasaka, Sol. Engery 136, 379 (2016)

    Article  Google Scholar 

  44. 44.

    H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, Nano Lett. 13, 2412 (2013)

    Article  Google Scholar 

  45. 45.

    X. Wang, Z. Zhang, J. Qin, W. Shi, Y. Liu, H. Gao, Y. Mao, Electrochim. Acta 245, 839 (2017)

    Article  Google Scholar 

  46. 46.

    W. Li, A. Frenkel, J.C. Woicik, C. Ni, S.I. Shah, Phys. Rev. B 72, 155315 (2005)

    Article  Google Scholar 

  47. 47.

    W. Wang, J. Dong, X. Ye, Y. Li, Y. Ma, L. Qi, Small 12, 1469 (2016)

    Article  Google Scholar 

  48. 48.

    J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu, Appl. Phys. Lett. 106, 591 (2015)

    Google Scholar 

  49. 49.

    H.H. Jin, H.I. Sang, J.H. Noh, T.N. Mandal, C.S. Lim, J.A. Chang, H.L. Yong, H.J. Kim, A. Sarkar, M.K. Nazeeruddin, Nat. Photonics 7, 486 (2013)

    Article  Google Scholar 

  50. 50.

    H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, J. Bisquert, Nat. Commun. 4, 2242 (2013)

    Article  Google Scholar 

  51. 51.

    J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim, D. Kim, H.W. Shin, T.K. Ahn, C. Wolf, T.W. Lee, S.H. Im, Adv. Mater. 27, 3424 (2015)

    Article  Google Scholar 

  52. 52.

    D. Bi, W. Tress, M.I. Dar, G. Peng, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.P.C. Baena, Sci. Adv. 2, e1501170 (2016)

    Article  Google Scholar 

  53. 53.

    Y. Hou, X. Chen, S. Yang, C. Li, H. Zhao, H.G. Yang, Adv. Funct. Mater. 27, 1700878 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Shanghai (Nos. 18ZR1411900, 18ZR1411000) and National Natural Science Foundation of China (No. 11274119).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sumei Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Deng, X., Zhou, X. et al. Efficient formamidinium–methylammonium lead halide perovskite solar cells using Mg and Er co-modified TiO2 nanorods. J Mater Sci: Mater Electron 30, 11043–11053 (2019). https://doi.org/10.1007/s10854-019-01446-2

Download citation