Skip to main content
Log in

CNC assisted spray deposition of large grain size CH3NH3PbI3 film for perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents a utilization of spray deposition technique in the fabrication of thin film perovskite solar cell devices with an assistance of a homemade CNC machine. An 80 nm-thick compact TiO2 was sprayed at a substrate temperature of 400 °C for electron blocking layer. Both one and two-step spray deposition technique are used to compare the quality of the perovskite absorber layer. A large grain size and voids free CH3NH3PbI3 film achieved by using the two-step spray deposition process. When such films are incorporated into a solar cell device with conductive carbon counter electrode, the maximum power conversion efficiencies of up to 9.58% are realized. This approach could pave the way to develop low-cost perovskite solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Le, K. Hong, H. Jang, S. Kim, Halide Perovskite quantum dots for light-emitting diodes: properties, synthesis, applications, and outlooks. Adv. Electron. Mater. 4, 12 (2018)

    Article  Google Scholar 

  2. Y. Zhang, W. Jie, P. Chen, W. Liu, J. Hao, Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices. Adv. Mater. 30, 34 (2018)

    Google Scholar 

  3. A. Filippetti, C. Caddeo, P. Delugas, A. Mattoni, Appealing perspectives of hybrid lead-iodide perovskites as thermoelectric materials. J. Phys. Chem. C 120(50), 28472–28479 (2016)

    Article  Google Scholar 

  4. N. Wang, W. Liu, Q. Zhang, Perovskite-based nanocrystals: synthesis and applications beyond solar cells. Small Methods 2, 6 (2018)

    Google Scholar 

  5. X. Zhao, J. Andrew Ag, R. Friend, Z. Tan, Opportunities and challenges in perovskite light-emitting devices. ACS Photonics 5(10), 3866–3875 (2018)

    Article  Google Scholar 

  6. S. Maiti, S. Karan, J. Kim, B. Khatua, Nature driven bio-piezoelectric/triboelectric nanogenerator as next-generation green energy harvester for smart and pollution free society. Adv. Energy Mater. 9(9), 1803027 (2019)

    Article  Google Scholar 

  7. A. Kojima, K. Teshima, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  8. H. Kim, A. Hagfeldt, N. Park, Morphological and compositional progress in halide perovskite solar cells. Chem. Commun. 55, 1192–1200 (2019)

    Article  Google Scholar 

  9. M. Liu, M. Johnston, H. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  10. J. Su, H. Cai, X. Ye, X. Zhou, J. Yang, D. Wang, J. Ni, J. Li, J. Zhang, Efficient perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air. ACS Appl. Mater. Interfaces 11(11), 10689–10696 (2019)

    Article  Google Scholar 

  11. F. Huang, M. Li, P. Siffalovic, G. Cao, J. Tian, Performance and stability of co-evaporated vapor deposited perovskite solar cells. Energy Environ. Sci. 12, 518–549 (2019)

    Article  Google Scholar 

  12. Y. Liang, Y. Yao, X. Zhang, W. Hsu, Y. Gong, J. Shin, E. Wachsman, M. Dagenais, I. Takeuchi, Fabrication of organic-inorganic perovskite thin films for planar solar cells via pulsed laser deposition. AIP Adv. 6, 015001 (2016)

    Article  Google Scholar 

  13. R. Kottokkaran, H. Gaonkar, H. Abbas, M. Noack, V. Dalal, Performance and stability of co-evaporated vapor deposited perovskite solar cells. J. Mater. Sci.: Mater. Electron. 30(6), 5487–5494 (2019)

    Google Scholar 

  14. J. Chen, S. Kim, N. Park, FA0.88Cs0.12PbI3−x(PF6)x Interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 30(40), 1801948 (2018)

    Article  Google Scholar 

  15. D. Son, J. Lee, Y. Choi, I. Jang, S. Lee, P. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, N. Park, Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells. Nat. Energy 1, 16081 (2016)

    Article  Google Scholar 

  16. S. Li, C. Chang, Y. Wang, C. Lin, D. Wang, J. Lin, C. Chen, H. Sheu, H. Chia, W. Wu, U. Jeng, C. Liang, R. Sankar, F. Chou, C. Chen, Energy Environ. Sci. 9, 1282–1289 (2016)

    Article  Google Scholar 

  17. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. Nazeeruddin, M. Grätzel, T. Moehl, Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014)

    Article  Google Scholar 

  18. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7, 2359–2365 (2014)

    Article  Google Scholar 

  19. H. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. Kim, Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 6, 6679–6683 (2014)

    Article  Google Scholar 

  20. H. Chen, X. Ding, X. Pan, T. Hayat, A. Alsaedi, Y. Ding, S. Dai, Comprehensive studies of air-brush spray deposition used in fabricating high-efficiency CH3NH3PbI3 perovskite solar cells: combining theories with practices. J. Power Sources 402, 82–90 (2018)

    Article  Google Scholar 

  21. A. Barrows, A. Pearson, K. Chan, A. Dunbar, A. Buckley, D. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950 (2014)

    Article  Google Scholar 

  22. H. Jin, M. Lee, H. Min, H. Sang, Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. 4, 17636–17642 (2016)

    Article  Google Scholar 

  23. K. Boopathi, R. Mohan, T. Huang, W. Budiawan, M. Lin, C. Lee, K. Ho, C. Chu, Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives. J. Mater. Chem. A 4, 1591–1597 (2016)

    Article  Google Scholar 

  24. J. Yang, Z. Yuan, X. Liu, S. Braun, Y. Li, J. Tang, F. Gao, C. Duan, M. Fahlman, Q. Bao, Oxygen- and water-induced energetics degradation in organometal halide perovskites. ACS Appl. Mater. Interfaces. 10(18), 16225–16230 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.02-2015.49.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Tung Duong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, TT., Tran, TD. & Le, QT. CNC assisted spray deposition of large grain size CH3NH3PbI3 film for perovskite solar cells. J Mater Sci: Mater Electron 30, 11027–11033 (2019). https://doi.org/10.1007/s10854-019-01444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01444-4

Navigation