Skip to main content

Advertisement

Log in

Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, electrochemical energy storage performances of an efficient Ni–Fe sulfide and hydroxide supported on porous nickel foam are compared. X-ray diffraction (XRD), X-rayphotoelectron spectroscopy (XPS) and energy-dispersive X-ray spectrometer (EDS) results confirmed the formation of Ni–Fe–S and Ni–Fe–OH electrodes. In addition, Brunauer–Emmett Teller (BET) was used to determine the specific surface area of the prepared materials. Moreover, the morphologies were observed by scanning electron microscopy (SEM). The brilliant characteristics of Ni–Fe–S could be attributed to transport acceleration in electrolyte ions and electrons, occurrence of redox reactions as well as the higher conductivity of the sample. From stand point of comparison, the capacitance of Ni–Fe–S is more than that of Ni–Fe–OH. Therefore, the exchange of O2− with S2− in Ni–Fe–OH lattice obviously improves the electrochemical performance. The as-fabricated Ni–Fe sulfide electrode exhibits a tremendous specific capacitance of 884.9 F g−1 at 1 A g−1. Furthermore, an assembled asymmetric supercapacitor device using the activated carbon as negative electrode and this smart configuration (Ni–Fe–S) as positive electrode also provided a maximum specific power and specific energy of 8000 W kg−1, 37.9 Wh kg−1, respectively. Also, it shows cycling stability with 88.8% capacitance retention after 1700 cycles in aqueous electrolyte, demonstrating its potential application in the next-generation high-performance supercapacitors used for energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000)

    Article  Google Scholar 

  2. J.R. Miller, A.F. Burke, Electrochemical capacitors: challenges and opportunities for real-world applications. Electrochem. Soc. Interface 17(1), 53 (2008)

    Google Scholar 

  3. R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, Y. Yamauchi, Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. Acs Nano 9(6), 6288–6296 (2015)

    Article  Google Scholar 

  4. W. Fu, C. Zhao, W. Han, Y. Liu, H. Zhao, Y. Ma, E. Xie, Cobalt sulfide nanosheets coated on NiCo 2 S 4 nanotube arrays as electrode materials for high-performance supercapacitors. J. Mater. Chem. A 3(19), 10492–10497 (2015)

    Article  Google Scholar 

  5. D.Y. Kim, G. Ghodake, N. Maile, A. Kadam, D.S. Lee, V. Fulari, S. Shinde, Chemical synthesis of hierarchical NiCo 2 S 4 nanosheets like nanostructure on flexible foil for a high performance supercapacitor. Sci. Rep. 7(1), 9764 (2017)

    Article  Google Scholar 

  6. L. Li, L. Tan, G. Li, Y.Z.B. Wu, Insight into synergy within multi-decorated graphene 3D networks for high performance supercapacitor. J. Solid State. Chem. 251, 266–273 (2017)

    Article  Google Scholar 

  7. X. Xu, J. Gao, Q. Tian, X. Zhai, Y. Liu, Walnut shell derived porous carbon for a symmetric all-solid-state supercapacitor. Appl. Surf. Sci. 411, 170–176 (2017)

    Article  Google Scholar 

  8. M. Winter, R.J. Brodd (2004) What are batteries, fuel cells, and supercapacitors?. ACS Publ. 104(10):4245–4270

    Google Scholar 

  9. G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196(1), 1–12 (2011)

    Article  Google Scholar 

  10. M. Suominen, S. Lehtimäki, R. Yewale, P. Damlin, S. Tuukkanen, C. Kvarnström, Electropolymerized polyazulene as active material in flexible supercapacitors. J. Power Sources 356, 181–190 (2017)

    Article  Google Scholar 

  11. Z. She, Development of co-assembly methods for improved graphene/ionic liquid supercapacitors. (UWSpace, Madison, 2017)

    Google Scholar 

  12. K. Xu, Q. Ren, Q. Liu, W. Li, R. Zou, J. Hu, Design and synthesis of 3D hierarchical NiCo2S4@ MnO2 core–shell nanosheet arrays for high-performance pseudocapacitors. RSC Adv. 5(55), 44642–44647 (2015)

    Article  Google Scholar 

  13. Z. Li, Y. An, Z. Hu, N. An, Y. Zhang, B. Guo, Z. Zhang, Y. Yang, H. Wu, Preparation of a two-dimensional flexible MnO 2/graphene thin film and its application in a supercapacitor. J. Mater. Chem. A 4(27), 10618–10626 (2016)

    Article  Google Scholar 

  14. J. Kim, C. Young, J. Lee, M.S. Park, M. Shahabuddin, Y. Yamauchi, J.H. Kim, CNTs grown on nanoporous carbon from zeolitic imidazolate frameworks for supercapacitors. Chem. Commun. 52(88), 13016–13019 (2016)

    Article  Google Scholar 

  15. A. Azhari, Additive manufacturing of graphene-based devices. (UW Space, Madison, 2017)

    Google Scholar 

  16. N.I. Chandrasekaran, H. Muthukumar, A.D. Sekar, M. Manickam, Hollow nickel-aluminium-manganese layered triple hydroxide nanospheres with tunable architecture for supercapacitor application. Mater. Chem. Phys. 195, 247–258 (2017)

    Article  Google Scholar 

  17. Y. Bi, A. Nautiyal, H. Zhang, J. Luo, X. Zhang, One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors. Electrochim. Acta 260, 952–958 (2018)

    Article  Google Scholar 

  18. H. Lee, W.J. Lee, Y.K. Park, S.J. Ki, B.J. Kim, S.C. Jung, Liquid phase plasma synthesis of iron oxide nanoparticles on nitrogen-doped activated carbon resulting in nanocomposite for supercapacitor applications. Nanomateterials 8(4), 190 (2018)

    Article  Google Scholar 

  19. C. Chen, M.K. Wu, K. Tao, J. Zhou, Y.L. Li, X. Han, L. Han, Formation of bimetallic metal-organic frameworks nanosheets and their derived porous nickel-cobalt sulfides for supercapacitors. Dalton Trans. 47, 5639–5645 (2018)

    Article  Google Scholar 

  20. Q. Gao, X. Wang, Z. Shi, Z. Ye, W. Wang, N. Zhang, Z. Hong, M. Zhi, Synthesis of porous NiCo2S4 aerogel for supercapacitor electrode and oxygen evolution reaction electrocatalyst. Chem. Eng. J. 331, 185–193 (2018)

    Article  Google Scholar 

  21. J. Kim, J. Lee, J. You, M.S. Park, M.S. Al Hossain, Y. Yamauchi, J.H. Kim, Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater. Horiz. 3(6), 517–535 (2016)

    Article  Google Scholar 

  22. M. Moussa, M.F. El-Kady, S. Abdel-Azeim, R.B. Kaner, P. Majewski, J. Ma, Compact, flexible conducting polymer/graphene nanocomposites for supercapacitors of high volumetric energy density. Compos. Sci. Technol 160, 50–59 (2018)

    Article  Google Scholar 

  23. S.P. Vattikuti, A.K.R. Police, J. Shim, C. Byon, Sacrificial-template-free synthesis of core-shell C@ Bi2S3 heterostructures for efficient supercapacitor and H2 production applications. Sci. Rep 8(1), 4194 (2018)

    Article  Google Scholar 

  24. T. Liu, L. Zhang, W. You, J. Yu, Core–shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 14(12), 1702407 (2018)

    Article  Google Scholar 

  25. I. Dhole, Y. Navale, C. Pawar, S. Navale, V. Patil, Physicochemical and supercapacitive properties of electroplated nickel oxide electrode: effect of solution molarity. J. Mater. Sci. Mater. Electron 29(7), 5675–5687 (2018)

    Article  Google Scholar 

  26. H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J. Power Sources 248, 28–36 (2014)

    Article  Google Scholar 

  27. P. Kakvand, M.S. Rahmanifar, M.F. El-Kady, A. Pendashteh, M.A. Kiani, M. Hashami, M. Najafi, A. Abbasi, M.F. Mousavi, R.B. Kaner, Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors. Nanotechnology 27(31), 315401 (2016)

    Article  Google Scholar 

  28. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy. Environ. Sci 3(9), 1238–1251 (2010)

    Article  Google Scholar 

  29. J. Jiang, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater 24(38), 5166–5180 (2012)

    Article  Google Scholar 

  30. J. Zhu, L. Xiang, D. Xi, Y. Zhou, J. Yang, One-step hydrothermal synthesis of flower-like CoS hierarchitectures for application in supercapacitors. Bull. Mater. Sci. 41(2), 54 (2018)

    Article  Google Scholar 

  31. C.A. Pandey, S. Ravuri, R. Ramachandran, R. Santhosh, S. Ghosh, S. Sitaraman, A.N. Grace, Synthesis of NiS–graphene nanocomposites and its electrochemical performance for supercapacitors. Int. J. Nanosci. 17(01n02), 1760021 (2018)

    Article  Google Scholar 

  32. M. Zhou, J. He, L. Wang, S. Zhao, Q. Wang, S. Cui, X. Qin, R. Wang, Synthesis of carbonized-cellulose nanowhisker/FeS 2@ reduced graphene oxide composite for highly efficient counter electrodes in dye-sensitized solar cells. Sol. Energy 166, 71–79 (2018)

    Article  Google Scholar 

  33. F. Yu, Z. Chang, X. Yuan, F. Wang, Y. Zhu, L. Fu, Y. Chen, H. Wang, Y. Wu, W. Li, Ultrathin NiCo 2 S 4@ graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors. J. Mater. Chem. A6(14), 5856–5861 (2018)

    Article  Google Scholar 

  34. S.H. Park, Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2-y) material for lithium secondary batteries. Electrochim. Acta 47(11), 1721–1726 (2002)

    Article  Google Scholar 

  35. J. Pu, F. Cui, S. Chu, T. Wang, E. Sheng, Z. Wang, Preparation and electrochemical characterization of hollow hexagonal NiCo2S4 nanoplates as pseudocapacitor materials. ACS Sustain. Chem. Eng. 2(4), 809–815 (2013)

    Article  Google Scholar 

  36. R. Jia, F. Zhu, S. Sun, T. Zhai, H. Xia, Dual support ensuring high-energy supercapacitors via high-performance NiCo2S4@ Fe2O3 anode and working potential enlarged MnO2 cathode. J. Power Sources 341, 427–434 (2017)

    Article  Google Scholar 

  37. G.S. Jang, S. Ameen, M.S. Akhtar, H.S. Shin, Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor. Ceram. Int. 44(1), 588–595 (2018)

    Article  Google Scholar 

  38. P. Zhou, L. Fan, J. Wu, C. Gong, J. Zhang, Y. Tu, Facile hydrothermal synthesis of NiTe and its application as positive electrode material for asymmetric supercapacitor. J. Alloy. Compd. 685, 384–390 (2016)

    Article  Google Scholar 

  39. Z. Xu, J. Yu, G. Liu, B. Cheng, P. Zhou, X. Li, Microemulsion-assisted synthesis of hierarchical porous Ni (OH) 2/SiO2 composites toward efficient removal of formaldehyde in air. Dalton Trans. 42(28), 10190–10197 (2013)

    Article  Google Scholar 

  40. M.C. Biesinger, B.P. Payne, L.W. Lau, A. Gerson, R.S.C. Smart, X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Sur. Interface Anal. 41(4), 324–332 (2009)

    Article  Google Scholar 

  41. C.V. Gopi, M. Venkata-Haritha, S. Ravi, C.V. Thulasi-Varma, S.K. Kim, H.J. Kim, Solution processed low-cost and highly electrocatalytic composite NiS/PbS nanostructures as a novel counter-electrode material for high-performance quantum dot-sensitized solar cells with improved stability. J. Mater. Chem. C 3(48), 12514–12528 (2015)

    Article  Google Scholar 

  42. Z. Yu, Z. Kang, Z. Hu, J. Lu, Z. Zhou, S. Jiao, Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. ChemComm. 52(68), 10427–10430 (2016)

    Google Scholar 

  43. S.Y. Lee, Y.C. Kang, Sodium-ion storage properties of FeS–reduced graphene oxide composite powder with a crumpled structure. Chem. Eur. J. 22(8), 2769–2774 (2016)

    Article  Google Scholar 

  44. S. Hussain, T. Liu, N. Aslam, Y. Zhang, S. Zhao, Truncated NiCo2S4 cubohexa-octahedral nanostructures for high-performance supercapacitor. Mater. Lett. 189, 21–24 (2017)

    Article  Google Scholar 

  45. T. Huang, X.Z. Song, X. Chen, X.L. Chen, F.F. Sun, Q.F. Su, L.D. Li, Z. Tan, Carbon coated nickel–cobalt bimetallic sulfides hollow dodecahedrons for a supercapacitor with enhanced electrochemical performance. New J. Chem. 42(7), 5128–5134 (2018)

    Article  Google Scholar 

  46. L. Hou, H. Hua, R. Bao, Z. Chen, C. Yang, S. Zhu, G. Pang, L. Tong, C. Yuan, X. Zhang, AnionExchange formation of hollow NiCo2S4 nanoboxes from mesocrystalline nickel cobalt carbonate nanocubes towards enhanced pseudocapacitive properties. ChemPlusChem 81(6), 557–563 (2016)

    Article  Google Scholar 

  47. J. Pu, T. Wang, H. Wang, Y. Tong, C. Lu, W. Kong, Z. Wang, Direct growth of NiCo2S4 nanotube arrays on nickel foam as highperformance binderfree electrodes for supercapacitors. ChemPlusChem 79(4), 577–583 (2014)

    Article  Google Scholar 

  48. Z. Wu, High energy density asymmetric supercapacitors from mesoporous NiCo2S4 nanosheets. Electrochim. Acta 174, 238–245 (2015)

    Article  Google Scholar 

  49. M.C. Liu, J.J. Li, Y.X. Hu, Q.Q. Yang, L. Kang, Design and fabrication of Ni3P2O8-Co3P2O8· 8H2O as advanced positive electrodes for asymmetric supercapacitors. Electrochim. Acta 201, 142–150 (2016)

    Article  Google Scholar 

  50. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Constant-phase-element behavior caused by resistivity distributions in films I. Theory. J. Electrochem. Soc. 157(12), C452–C457 (2010)

    Article  Google Scholar 

  51. V.M.W. Huang, V. Vivier, M.E. Orazem, N. Pébère, B. Tribollet, The apparent constant-phase-element behavior of a disk electrode with faradaic reactions a global and local impedance analysis. J. Electrochem. Soc 154(2), C99–C107 (2007)

    Article  Google Scholar 

  52. M. Kim, J. Kim, Development of high power and energy density microsphere silicon carbide–MnO2 nanoneedles and thermally oxidized activated carbon asymmetric electrochemical supercapacitors. Phys. Chem. Chem. Phys. 16(23), 11323–11336 (2014)

    Article  Google Scholar 

  53. F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, X.X. Liu, Y. Li, High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. Nanoscale 5(17), 7984–7990 (2013)

    Article  Google Scholar 

  54. W. Hu, R. Chen, W. Xie, L. Zou, N. Qin, D. Bao, CoNi2S4 nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. ACS Appl. Mater. Interfaces 6(21), 19318–19326 (2014)

    Article  Google Scholar 

  55. X. Xiong, G. Waller, D. Ding, D. Chen, B. Rainwater, B. Zhao, Z. Wang, M. Liu, Controlled synthesis of NiCo2S4 nanostructured arrays on carbon fiber paper for high-performance pseudocapacitors. Nano Energy 16, 71–80 (2015)

    Article  Google Scholar 

  56. Y. Zhu, Mesoporous NiCo2S4 nanoparticles as high-performance electrode materials for supercapacitors. J. Power Sources 273, 584–590 (2015)

    Article  Google Scholar 

  57. W. Kong, Homogeneous core–shell NiCo2S4 nanostructures supported on nickel foam for supercapacitors. J. Mater. Chem. A 3(23), 12452–12460 (2015)

    Article  Google Scholar 

  58. Z. Zeng, D. Wang, J. Zhu, F. Xiao, Y. Li, X. Zhu, NiCo2 S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors. Cryst. Eng. Commun. 18(13), 2363–2374 (2016)

    Article  Google Scholar 

  59. Y. Zhang, J. Xu, Y. Zheng, Y. Zhang, X. Hu, T. Xu, NiCo2S4@ NiMoO4 core-shell heterostructure nanotube arrays grown on Ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res. Lett. 12(1), 412–420 (2017)

    Article  Google Scholar 

  60. Q. Chen, J. Miao, L. Quan, D. Cai, H. Zhan, Bimetallic CoNiSx nanocrystallites embedded in nitrogen-doped carbon anchored on reduced graphene oxide for high-performance supercapacitors. Nanoscale 10(8), 4051–4060 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Moradi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 238 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naseri, M., Moradi, M., Hajati, S. et al. Comparative studies on electrochemical energy storage of NiFe-S nanoflake and NiFe-OH towards aqueous supercapacitor. J Mater Sci: Mater Electron 30, 4499–4510 (2019). https://doi.org/10.1007/s10854-019-00738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00738-x

Navigation