Skip to main content
Log in

Interatomic chemical bonding and charge correlation of optical, magnetic and dielectric properties of La1−xSrxFeO3 multiferroics synthesized by solid- state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Strontium (Sr) substituted LaFeO3 (La1−xSrxFeO3) (x = 0.05, 0.10, 0.15 and 0.20) multiferroics were synthesized by the conventional high temperature solid-state reaction method. The X-ray diffraction was used to analyze the phase formation and purity of La1−xSrxFeO3 multiferroics. The X-ray diffraction patterns confirm that all the samples are monophasic with orthorhombic structure. The charge density distribution and the interatomic chemical bonding between the neighbouring atoms in the unit cell were examined using the structure factors obtained through the refinement process. SEM micrographs were used to observe the surface morphology and to determine the average particle size. UV–Vis spectrographs and magnetic hysteresis (M–H) loops from magnetic measurements were exploited to investigate the optical and magnetic behavior of the samples. The magnetic hysteresis loops indicate that the prepared La1−xSrxFeO3 multiferroics exhibit ferromagnetic behavior. Ferromagnetism was observed to be relatively prominent for x = 0.05 sample, with high values of magnetic parameters such as Ms, Mr, and HC as 2.4 emu/g, 1.12 emu/g, and 1616 G respectively. The dielectric measurements indicate that the sample with Sr content x = 0.05, attains the giant value of dielectric constant of about 2.3 × 105 and ac conductivity of about 0.2 Ω−1m−1 when compared to the other samples. The optical, magnetic and dielectric properties of La1−xSrxFeO3 multiferroics have been examined and also have been correlated with the charge, bonding nature and the spin of the constituent ions which has not been explored in open literature so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S. Mostafa Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776 (2015)

    Google Scholar 

  2. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M. Rangraz Jeddy, J. Mater. Sci.: Mater. Electron. 27, 11691 (2016)

    Google Scholar 

  3. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M. Reza Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6911 (2017)

    Article  Google Scholar 

  4. C.A.M. Van den Broek, A.L. Stuijts, Philips Tech. Rev. 37, 157 (1977)

    Google Scholar 

  5. X. Zuo, S. Ping, S.A. Oliver, C. Victoria, IEEE Trans.Magn. 38, 3493 (2002)

    Article  Google Scholar 

  6. X. Zuo, H. How, S. Somu, C. Victoria, IEEE Trans. Magn. 39, 3160 (2003)

    Article  Google Scholar 

  7. C.A.L. Dixon, C.M. Kavanagh, K.S. Knight, W. Kockelmann, F.D. Morrison, P. Lightfoot, J Solid State Chem. 230, 337 (2015)

    Article  Google Scholar 

  8. P. Ciambelli, S. Cimino, S. De Rossi, L. Lis, G. Minelli, P. Porta, G. Russo, Appl. Catal. B 29, 239 (2001)

    Article  Google Scholar 

  9. S. Phokha, S. Pinitsoontorn, S. Rujirawat, S. Maensiri, Physica B. 476, 55 (2015)

    Article  Google Scholar 

  10. S. Acharya, J. Mondal, S. Ghosh, S.K. .Roy, P.K. Chakrabarti, Mater. Lett. 64, 415 (2010)

    Article  Google Scholar 

  11. B.C. Steele, A. Heinzel, Nature 414, 345 (2001)

    Article  Google Scholar 

  12. A. Hammou, J. Guindet, P.J. Gellings, H.J.M. Bouwmeester (Eds.) The CRC Handbook of Solid State Electrochemistry, (CRC Press Inc., Boca Raton, 1997), Vol 407, pp. 1–200

    Google Scholar 

  13. P.S. Devi, A.D. Sharma, H.S. Maiti, T Indian Ceram. Soc. 63, 75 (2004)

    Article  Google Scholar 

  14. C. Vasques, P. Kogerler, M.A. Lopez-Quintela, J. Mater. Res. 13, 451 (1998)

    Article  Google Scholar 

  15. D.B. Meadowcraft, J.M. Wimmer, Ceram. Bull. 58, 610 (1979)

    Google Scholar 

  16. X. Liu, H. Ji, Y. Gu, M. Xu, Mater. Sci. Eng. B 133, 98 (2006)

    Article  Google Scholar 

  17. N.N. Toan, S. Saukko, V. Lantto, Physica B 327, 279 (2003)

    Article  Google Scholar 

  18. M.A. Ahmed, N. Okasha, B. Hussein, J. Alloys Compd. 553, 308 (2013)

    Article  Google Scholar 

  19. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334, 1383 (2011)

    Article  Google Scholar 

  20. J. Rossmeisl, Z.W. Qu, H. Zhu, G.J. Kroes, J.K. Norskov, J. Electroanal. Chem. 607, 83 (2007)

    Article  Google Scholar 

  21. A. Grimaud, K.J. May, C.E. Carlton, Y.L. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao-Horn, Nat. Commun. 4, 2439 (2013)

    Article  Google Scholar 

  22. R.A. Rincon, E. Ventosa, F. Tietz, J. Masa, S. Seisel, V. Kuznetsov, W. Schuhmann, Chem. Phys. Chem. 15, 2810 (2014)

    Article  Google Scholar 

  23. T. L.Liu, Q. Zhang, L. Qi, W.Chen Zhang, B. Xu, Solid-State Electron 51, 1029 (2007)

    Article  Google Scholar 

  24. V.L. Kozhevnikov, I.A. Leonidov, M.V. Patrakeev, A.A. Markov, Y.N. Blinovskov, J. Solid State Electrochem. 13, 391 (2009)

    Article  Google Scholar 

  25. V.V. Kharton (ed.), Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes (Wiley-VCH, Weinheim, 2011)

    Google Scholar 

  26. G.R. Hearne, M.P. Pasternak, Phys. Rev. B 51, 11495 (1995)

    Article  Google Scholar 

  27. J.M. Liu, Q.C. Li, X.S. Gao, Y. Yang, X.H. Zhou, X.Y. Chen, Z.G. Liu, Phys. Rev. B 66, 054416 (2002)

    Article  Google Scholar 

  28. N.A. Hill, J. Phys. Chem. B. 104, 6694 (2000)

    Article  Google Scholar 

  29. T. Fujii, I. Matsusue, D. Nakatsuka, M. Nakanishi, J. Takada, Mater. Chem. Phys. 129, 805 (2011)

    Article  Google Scholar 

  30. B. Vishwanathan, V.R.K. Murthy, Ferrite Materials, Science, Technology, Narosa, New Delhi (1990)

    Google Scholar 

  31. S. Phokha, S. Hunpratup, S. Pinitsoontorn, B. Putasaeng, S. Rujirawat, S. Maensiri, Mater. Res. B 67, 118 (2015)

    Article  Google Scholar 

  32. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, J. Magn. Magn. Mater. 329, 133 (2013)

    Article  Google Scholar 

  33. I. Bhat, S. Husain, W. Khan, S.I. Patil, Mater. Res. Bull. 48, 4506 (2013)

    Article  Google Scholar 

  34. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Acta Mater. 59, 1338 (2011)

    Article  Google Scholar 

  35. Y. Janbutrach, S. Hunpratub, E. Swatsitang, Nanoscale Res. Lett. 9, 498 (2014)

    Article  Google Scholar 

  36. S. Hunpratub, A. Karaphun, S. Phokha, E. Swatsitang, Appl. Surf. Sci. 380, 52 (2016)

    Article  Google Scholar 

  37. B. Barbero, J.A. Gamboa, L.E. Cadus, Appl. Catal. B 65, 21 (2006)

    Article  Google Scholar 

  38. E. Swatsitang, A. Karaphun, S. Phokha, S. Hunpratub, T. Putjuso, J. Sol-Gel. Sci. Technol. 81, 483 (2017)

    Article  Google Scholar 

  39. B.V. Prasad, B.V. Rao, K. Narsaiah, G.N. Rao, J.W. Chen, D.S. Babu, IOP Conf. Ser.: Mater. Sci. Eng. 73, 012129 (2015)

    Article  Google Scholar 

  40. K.D. Chandrasekhar, S. Mallesh, J.K. Murthy, A.K. Das, A. Venimadhav, Physica B. 448, 304 (2014)

    Article  Google Scholar 

  41. S. Acharya, P.K. Chakrabarti, Solid State Commun. 150, 1234 (2010)

    Article  Google Scholar 

  42. X.P. Xiang, L.H. Zhao, B.T. Teng, J.J. Lang, X. Hu, T. Li, Y.A. Fang, M.F. Luo, J.J. Lin, Appl. Surf. Sci. 276, 328 (2013)

    Article  Google Scholar 

  43. A.E. Giannakas, A.A. Leontiou, A.K. Ladavos, P.J. Pomonis, Appl. Catal. A. 309, 254 (2006)

    Article  Google Scholar 

  44. P. Shikha, T.S. Kang, B.S. Randhawa, J. Alloys Compd. 625, 336 (2015)

    Article  Google Scholar 

  45. H. Xiao, C. Xue, P. Song, J. Li, Q. Wang, Appl. Surf. Sci. 337, 65 (2015)

    Article  Google Scholar 

  46. P. Tang, Y. Tong, H. Chen, F. Cao, G. Pan, Appl. Phys. 13, 340 (2013)

    Google Scholar 

  47. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  48. M. Sakata, M. Sato, Accurate structure analysis by the maximum entropy method. Acta Crystallogr. A 46, 263 (1990)

    Article  Google Scholar 

  49. R. Saravanan, N. Thenmozhi, Yen-Pei Fu, J. Electron. Mater. 45, 4364 (2016)

    Article  Google Scholar 

  50. R.A.J.R. Sheeba, S. Saravanakumar, S. Israel, R. Saravanan, J. Alloys Compd. 728, 887 (2017)

    Article  Google Scholar 

  51. R. Saravanan, M. Charles Robert, J. Alloys Compd. 479, 26 (2009)

    Article  Google Scholar 

  52. T.K. Thirumalaisamy, R. Saravanan, S. Saravanakumar, J. Mater. Sci.:Mater. Electron. 26, 6683 (2015)

    Google Scholar 

  53. S. Sasikumar, R. Saravanan, J. Electron. Mater. 46, 4187 (2017)

    Article  Google Scholar 

  54. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)

    Article  Google Scholar 

  55. D.T. Richens, The Chemistry of Aqua Ions (Wiley, New Jersey, 604 (1997)

    Google Scholar 

  56. A.T. Nguyen, M.V. Knurova, T.M. Nguyen, V.O. Mittova, I.Ya. Mittova, Nanosyst.: Phys. Chem. Math. 5, 692 (2014)

    Google Scholar 

  57. B.M. Gorelov, E.V. Kotenok, S.N. Makhno, V.V. Sydorchuk, S.V. Khalameida, V.A. Zazhigalov, Solid -State Electron. 56, 83 (2011)

    Google Scholar 

  58. V.M. Goldschmidt, Naturwissenschaften. 14, 477 (1926)

    Article  Google Scholar 

  59. V. Petricek, M. Dusek, L. Palatinus, JANA, the crystallographic computing system (Praha, Czech Republic, 2006)

    Google Scholar 

  60. R.W.G. Wyckoff, Crystal Structures I (Inter-Space Publishers, London, 1963)

    Google Scholar 

  61. S. Saravanakumar, J. Kamalaveni, M. Prema Rani, R. Saravanan, J. Mater. Sci.: Mater. Electron. 25, 1 (2014)

    Google Scholar 

  62. F. Izumi, R.A. Dilanien. PRIMA, for the maximum entropy method advanced materials laboratory, Japan (2004)

  63. F. Momma, Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  64. D. Li, F. Wang, T. Wu, T. Xie, Li, Mater. Chem. Phys. 64, 269 (2000)

    Article  Google Scholar 

  65. J. Tauc, R. Grigorvici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)

    Article  Google Scholar 

  66. P.C. Maxwell, Electricity and Magnetism, Oxford university press, Oxford, Vol 1, Section 328

  67. C.G. Koop, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Sophisticated Analytical Instrument Facility (SAIF), Cochin University, India, for their help in the collection of powder X-ray diffraction data, UV–Visible spectra and SEM micrographs. Also, the authors thank Gandhigram rural university, Dindugal, Tamilnadu, India for EDS measurements. The authors acknowledge SAIF, IIT Madras, Chennai, India, for the VSM measurements. The authors would like to acknowledge Abraham Panampara Research Center (APRC), Sacred Heart College, Vellore, Tamilnadu, India for dielectric measurements. The authorities of The Madura College, Madurai-625 011, Tamilnadu, India are gratefully acknowledged for their constant encouragement of the research activities of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gowri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowri, G., Saravanan, R., Sasikumar, S. et al. Interatomic chemical bonding and charge correlation of optical, magnetic and dielectric properties of La1−xSrxFeO3 multiferroics synthesized by solid- state reaction method. J Mater Sci: Mater Electron 30, 4409–4426 (2019). https://doi.org/10.1007/s10854-019-00730-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00730-5

Keywords

Navigation