High frequency studies on dielectric, impedance and Nyquist properties of BaTiO3–Li0.5Fe2.5O4 composite ceramics substituted with Sm and Nb for microwave device applications


The BaTiO3–Li0.5Fe2.5O4 composite ceramics doped with Sm and Nb having chemical formulae (90)BaTi(1−2x)NbxSmxO3+(10)Li0.5Fe2.5O4 (x = 0, 0.05 and 0.1) were prepared using solid state reaction technique. The structural, qualitative structural information regarding functional groups, dielectric, Nyquist plots, the variation of impedance with frequency (1–10 MHz) at different temperatures, the variation of dielectric properties, A.C. conductivity and impedance with frequency between 1 MHz and 3.2 GHz at 30 °C of composites are investigated. The X-Ray diffraction peaks indicate the formation of tetragonal structure of all composites with a small amount of ferrite phase. From fourier transform infrared spectroscopy (FTIR) measurements, the presence of function groups have been identified. The dielectric studies reveal the higher value of the dielectric constant of all composites at low frequency regime due to an interfacial polarization. The dielectric constant of BTNS0.1 is higher than BTLF, BTNS0.05 which shows dispersion at low frequency region. The dielectric loss of BTLF decreases in the frequency region 80MHz–1.10 GHz. The impedance (Z′) of all composites decreases with an increase in the frequency and temperature. The impedance studies show the complex behaviour of all the composites which indicates the enhancement of AC conductivity of material at higher frequencies beyond 3 GHz. The conductivity studies of composites show dispersion characteristics among the samples and the conductivity of composites is enhanced by incorporation of Nb, Sm in BTLF composites. The radii of all semi circles decrease with increase in temperature which represents conductivity of composites increases with increase in temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    P.K. Patel, J. Rani, N. Adhlakha, H. Singh, K.L. Yadav, Enhanced dielectric properties of doped barium titanate ceramics. J. Phys. Chem. Solids 74, 545–549 (2013)

    Article  CAS  Google Scholar 

  2. 2.

    H. Haibo Yang, L. Wang, X. He, Yao, Hexagonal BaTiO3/Ni0.8Zn0.2Fe2O4 composites with giant dielectric constant and high permeability. Mater. Chem. Phys. 134, 777–782 (2012)

    Article  CAS  Google Scholar 

  3. 3.

    T. Xu, L. Chen, Z. Guo, T. Ma, Strategic improvement of the long-term stability of perovskite materials and perovskite solar cells. Phys. Chem. Chem. Phys. 18, 27026–27050 (2016)

    Article  CAS  Google Scholar 

  4. 4.

    T. Badapanda, S. Sarangi, S. Parida, B. Behera, B. Ojha, S. Anwar, Frequency and temperature dependence dielectric study of strontium modified Barium Zirconium Titanate ceramics obtained by mechanochemical synthesis. J. Mater. Sci.: Mater. Electron. 26(5), 3069–3082 (2015)

    CAS  Google Scholar 

  5. 5.

    B. Luo, X. Wang, E. Tian, G. Li, L. Li, Electronic structure, optical and dielectric properties of BaTiO3/CaTiO3/SrTiO3 ferroelectric super lattices from first principles calculations. J. Mater. Chem. C 3, 8625–8633 (2015)

    Article  CAS  Google Scholar 

  6. 6.

    J.F. Scott, Appl. Mod. Ferroelectr. Sci. 315, 954–959 (2007)

    CAS  Google Scholar 

  7. 7.

    X. Na Zhu, X. Chen, H. Tian, X.M. Chen, Atomic scale investigation of enhanced ferroelectricity in (Ba, Ca) TiO3. RSC Adv. 7 22587–22591 (2017)

    Article  Google Scholar 

  8. 8.

    Ch Rayssi, S. El.Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1–xCo4x/3O3 (0 ≤ x ≤ 0.1) RSC Adv. 8 17139–17150 (2018)

    Article  CAS  Google Scholar 

  9. 9.

    S.B. Narang, D. Kaur, K. Pubby, Frequency and temperature dependence of dielectric and electric properties of Ba2 – xSm4 + 2x/3Ti8O24 with structural analysis. Mater. Sci. –Pol. 33(2), 268–277 (2015)

    Article  CAS  Google Scholar 

  10. 10.

    N.P. Cheremisinoff (ed.), Handbook of Ceramics and Composites, Synthesis and Properties, (Marcel Dekker Inc., New York, 1990)

    Google Scholar 

  11. 11.

    W. Cai, C. Fu, J. Gao, X. Deng, G. Chen & Z. Lin, Effect of samarium on the microstructure, dielectric and ferroelectric properties of barium titanate ceramics. Integr. Ferroelectr. 140, 92–103 (2012)

    Article  CAS  Google Scholar 

  12. 12.

    W. Cai, C.L. Fu, J.C. Gao et al., Dielectric properties and microstructure of Mg doped barium titanate ceramics. Adv. Appl. Ceram. 110(3), 181–185 (2011)

    Article  CAS  Google Scholar 

  13. 13.

    A.K. Nath, N. Medhi, Piezoelectric properties of environmental friendly bismuth doped barium titanate ceramics. Mater. Lett. 73, 75–77 (2012)

    Article  CAS  Google Scholar 

  14. 14.

    Y.X. Li, X. Yao, X.S. Wang et al., Studies of dielectric properties of rare earth (Dy, Tb, Eu) doped barium titanate sintered in pure nitrogen. Ceram. Int. 38(S1), S29–S32 (2011)

    Google Scholar 

  15. 15.

    V.V. Mitic, Z.S. Nikolic, V.B. Pavlovic et al., Influence of rare-earth dopants on barium titanate ceramics microstructure and corresponding electrical properties. J. Am. Ceram. Soc. 93(1), 132–137 (2010)

    Article  CAS  Google Scholar 

  16. 16.

    Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang, Effects of Nb2O5 doping on the microstructure and the dielectric temperature characteristics of barium titanate. J. Mater. Sci. 44(14), 3751–3757 (2009)

    Article  CAS  Google Scholar 

  17. 17.

    M.M. Vijatovi´c Petrovi´c, J.D. Bobi´c, T. Ramoˇska et al., Antimony doping effect on barium titanate structure and electrical properties. Ceram. Int. 37(7), 2669–2677 (2011)

    Article  CAS  Google Scholar 

  18. 18.

    M.C. Ferrarelli, C.C. Tan, D.C. Sinclair, Ferroelectric, electrical, and structural properties of Dy and Sc co-doped BaTiO3. J. Mater. Chem. 21(17), 6292–6299 (2011)

    Article  CAS  Google Scholar 

  19. 19.

    Y.-P. Fua, D.-S. Hung, Y.-D. Yao, Microwave properties of chromium-substituted lithium ferrite. Ceram. Int. 35(6), 2179–2184 (2009)

    Article  CAS  Google Scholar 

  20. 20.

    A. Verma, T.C. Goyal, R.G. Mindiretta, R.G. Gupta, High-resistivity nickel–zinc ferrites by the citrate precursor method. J. Magn. Magn. Mater. 192(2), 271–276 (1999)

    Article  CAS  Google Scholar 

  21. 21.

    M.A. El Hiti, Dielectric behavior and ac electrical conductivity of Zn-substituted Ni-Mg ferrites. J. Magn. Magn. Mater. 164(1–2), 187–196 (1996)

    Article  Google Scholar 

  22. 22.

    Seema Verma, P.A. Joy, Magnetic properties of super paramagnetic lithium ferrite nanoparticles. J. Appl. Phys. 98(12), 124312–124319 (2005)

    Article  CAS  Google Scholar 

  23. 23.

    S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res. 11(3), 316–321 (2010)

    Google Scholar 

  24. 24.

    S. B. Narang, D. Kaur, K. Pubby, Effect of Substitution of Samarium and Lanthanum on Dielectric and Electrical Properties of Barium Titanate. Ferroelectrics 486, 74–85 (2015)

    Article  CAS  Google Scholar 

  25. 25.

    J. Li, H. Kakemoto, S. Wada, T. Tsurumi, Dielectric properties of BaTiO3-based ceramics measured up to GHz region. J. Electroceram. 21, 427–430 (2008)

    Article  CAS  Google Scholar 

  26. 26.

    P. Padmini, T.R. Taylor, M.J. Lefevre, A.S. Nagre, R.A. York, J.S. Speck, Realization of high tunability barium strontium titanate thin films by rf magnetron sputtering. Appl. Phys. Lett. 75, 3186–3188 (1999)

    Article  CAS  Google Scholar 

  27. 27.

    Y. Gim, T. Hudson, Y. Fan, C. Kwon, T. Findikoglu, B.J. Gibbons, B.H. Park, Q.X. Jia, Microstructure and dielectric properties of Ba1 – xSrxTiO3Ba1–xSrxTiO3 films grown on LaAlO3 substrates. Appl. Phys. Lett. 77, 1200–1202 (2000)

    Article  CAS  Google Scholar 

  28. 28.

    J. Im, O. Auciello, P.K. Baumann, S.K. Streiffer, D.Y. Kaufman, A.R. Krauss, Composition-control of magnetron-sputter-deposited (BaxSr1–x)Ti1 + yO3 + z thin films for voltage tunable devices. Appl. Phys. Lett. 76, 625–627 (2000)

    Article  CAS  Google Scholar 

  29. 29.

    G.RaoG.L.R. Buddiga, K.N. Chidambara Kumar, M. Dasari, Influence of Sm and Nb on the structural, electric, magnetic and magneto-electric properties of BaTiO3-Li0.5Fe2.5O4 composite ceramics grown by the conventional solid state technique. J. Mater. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-0394-1

    Article  Google Scholar 

  30. 30.

    C.M.B. Henderson, J.M. Charnock, G. Cressey, D.T. Griffen, An EXAFS study of the local structural environments of Fe, Co, Zn and Mg in natural and synthetic staurolites. Miner. Mag. 61, (408) 613–625 (1997)

    Article  CAS  Google Scholar 

  31. 31.

    D.M. Sherman, The electronic structures of manganese oxide minerals. Am. Mineral. 69, 788–799 (1984)

    CAS  Google Scholar 

  32. 32.

    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Structural analysis of Y3+-doped Mg–Cd ferrites prepared by oxalate co-precipitation method. Mater. Chem. Phys. 114, 505–510 (2009)

    Article  CAS  Google Scholar 

  33. 33.

    N.M. Deraz, Fabrication, characterization and magnetic behaviour of alumina-doped zinc ferrite nano-particles. J. Anal. Appl. Pyrol. 91(1), 48–54 (2011)

    Article  CAS  Google Scholar 

  34. 34.

    A. Abdel Aal, T.R. Hammad, M. Zawrah, I.K. Battisha, A.B. Abou Hammad, FTIR Study of Nanostructure Perovskite BaTiO3 Doped with Both Fe3+ and Ni2+ Ions Prepared by Sol-Gel Technique, Acta Phys. Pol. A, 126 (6) (2014) 1318–1322

    Article  Google Scholar 

  35. 35.

    N. Ashutosh Mishra, S. Mishra, K.M. Bisen, Jarabana, Frequency and temperature dependent dielectric studies of BaTi0.96Fe0.04O3. International Conference on Recent Trends in Physics (ICRTP 2014)

  36. 36.

    R. Sharma, V. Singh, R.K. Kotnala, R.P. Tandon, Investigation on the effect of ferrite content on the multiferroic properties of (1-x) Ba0.95Sr0.05TiO3 - (x) Ni0.7Zn0.2Co0.1Fe2O4 ceramic composite. Mater. Chem. Phys. 160, 447–455 (2015)

    Article  CAS  Google Scholar 

  37. 37.

    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  38. 38.

    S.N. Babu, J.-H. Hsu, Y.S. Chen, J.G. Lin, Magnetoelectric response in lead-free multiferroic NiFe2O4-Na0.5Bi0.5TiO3 composites, J. Appl. Phys. 109, 07D904 1–07D904 34 (2011)

    Article  CAS  Google Scholar 

  39. 39.

    M. Asif Iqbal, M.U. Islama, I. Ali, M. Azhar khan, I. Sadiq, I. Ali, High frequency dielectric properties of Eu+ 3-substituted Li–Mg ferrites synthesized by sol–gel auto-combustion method. J. Alloys Compd. 586, 404–410 (2014)

    Article  CAS  Google Scholar 

  40. 40.

    N. Rezlescu, E. Rezlescu, Dielectric Properties of Copper Containing Ferrites. Phys. Status Solidi A. 23, 575–582 (1974)

    Article  CAS  Google Scholar 

  41. 41.

    C.E. Ciomaga, R. Calderone, M.T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Stancu, P. Nanni, Relaxor properties of Ba(Zr,Ti)O3 ceramics. J. Optoelectron. Adv. Mater. 8(3), 944–948 (2006)

    CAS  Google Scholar 

  42. 42.

    B. Chandra Babu, V. Naresh, B. Jayaprakash, S. Buddhudu, Structural, thermal and dielectric properties of lithium zinc silicate ceramic powders by sol-gel method. Ferroelectr. Lett. 38, 114–127 (2011)

    Article  CAS  Google Scholar 

  43. 43.

    B. Baruwati, K.M. Reddy, V. Sunkara, R.K. Manorama, O. Singh, J. Prakash, Tailored conductivity behavior in nanocrystalline nickel ferrite. Appl. Phys. Lett. 85(14), 2833–2835 (2004)

    Article  CAS  Google Scholar 

  44. 44.

    R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougle, Dielectric properties of mixed Li-Ni-Cd ferrites. Smart Mater Struct 15, 36–39 (2006)

    Article  CAS  Google Scholar 

  45. 45.

    R.S. Devan, B.K. Chougule, Effect of Composition on coupled electric magnetic and dielectric properties of two phase particulate magnetoelectric composite. J. Appl. Phys. 101(1), 014109–014106 (2007)

    Article  CAS  Google Scholar 

  46. 46.

    M.T. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Ali, I. Ahmad, M. Ishfaq, Structural, electrical and dielectric behavior of NixCo1–xPryFe2–yO4 nano-ferrites synthesized by sol-gel method. Dig. J. Nanomater. Biostruct. 10(1), 265–275 (2015)

    Google Scholar 

  47. 47.

    M. Raghasudha, D. Ravinder, P. Veera somaiah, Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Mater. Sci. Appl. 4(7), 432–438 (2013)

    CAS  Google Scholar 

  48. 48.

    S.B. Narang, D. Kaur, K. Pubby, Dielectric and impedance spectroscopy of samarium and lanthanum doped barium titanate at room temperature. Int. Sch. Sci. Res. Innov. 9(6), 667–671 (2015)

    Google Scholar 

  49. 49.

    N. Zidi, A. Chaouchi, S. d’Astorg, M. Rguiti, C. Courtois, Dielectric and impedance spectroscopy characterizations of CuO added (Na0.5Bi0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. J. Alloys Compd. 590, 557–564 (2014)

    Article  CAS  Google Scholar 

  50. 50.

    R.-H. Yue-MingLi, X.-P. Liao, Y.-P. Jiang, Zhang, Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 ceramics. J. Alloys Compd. 484, 961–965 (2009)

    Article  CAS  Google Scholar 

  51. 51.

    K.C. Verma, S.K. Tripathi, R.K. Kotnala, Surface spins enhanced magnetoelectric coefficient and impedance spectroscopy of BaFe0.01Ti0.99O3 and BaFe0.015Ti0.985O3 nanorods. Mater. Res. Bull. 68, 331–335 (2015)

    Article  CAS  Google Scholar 

  52. 52.

    K.C. Verma, M. Ram, J. Singh, R.K. Kotnala, Impedance spectroscopy and dielectric properties of Ce and La substituted Pb0.7Sr0.3(Fe0.012Ti0.988)O3 nanoparticles. J. Alloys Compd. 509, 4967–4971 (2011)

    Article  CAS  Google Scholar 

  53. 53.

    R. Poonam Kumari, S. Rai, Sharma†, M.A. Valente, Dielectric, electrical conduction and magnetic properties of multiferroic Bi0.8Tb0.1Ba0.1Fe0.9Ti0.1O3 perovskite compound. J Adv. Dielectr. 7(5), 1750034 (2017)

    Article  CAS  Google Scholar 

Download references


We would like to thank Dr. P.D Babu of UGC-DAE Consortium for Scientific Research, Mumbai center, R5-shed, BARC, Mumbai—400 085 for extending the facilities and his support. We would also like to thank Dr. V. Raghavendra Reddy and Dr. Mukul Gupta of UGC-DAE Consortium for Scientific Research, Indore for extending the facilities and their support. We also thank INUP, IITB for extending the facilities Dielectric measurements.

Author information



Corresponding author

Correspondence to Ganapathi Rao Gajula.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gajula, G.R., Chidambara Kumar, K.N., Buddiga, L.R. et al. High frequency studies on dielectric, impedance and Nyquist properties of BaTiO3–Li0.5Fe2.5O4 composite ceramics substituted with Sm and Nb for microwave device applications. J Mater Sci: Mater Electron 30, 3889–3898 (2019). https://doi.org/10.1007/s10854-019-00674-w

Download citation