Skip to main content
Log in

Microwave-hydrothermal synthesis of Y3Fe3.35Al1.65O12 nanoparticles for magneto-hyperthermia application

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Crystalline aluminum substituted yttrium iron garnet nanoparticles Y3Fe3.35Al1.65O12 (YIG) was synthesized by hydrothermal microwave synthesis at 140 °C with soaking times ranging from 15 to 60 min. X-ray diffraction confirmed the single-phase YIG nanoparticles excluding the presence of any other phases in the reaction products. The Raman spectra revealed that the largest soaking time provides greater energy crystallization causing changes of lattice vibration and a certain degree of disorder in the crystal lattice. Field emission gun-scanning electron microscopy and high resolution transmission electronic microscopic revealed a homogeneous size distribution of nanometric YIG powders with agglomerated particles. Magnetic measurements were achieved by using a vibrating-sample magnetometer unit. YIG nanoparticles have great potential in magneto-hyperthermia application once in vivo applications magnetic induction heating ferromagnetic compounds generate heat in AC magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Moroz, S.K. Jones, B.N. Gray, Magnetically mediated hyperthermia: current status and future directions. Int. J. Hyperth. 18, 267–284 (2002)

    Article  CAS  Google Scholar 

  2. J.J.W. Lagendijk, Hyperthermia treatment planning. Phys. Med. Biol. 45, R61–R76 (2000)

    Article  CAS  Google Scholar 

  3. A.R. Jordan, K. Scholz, M. Maier-Hauff, P. Johannsen, J. Wust, H. Nadobny, H. Schirra, S. Schmidt, S. Deger, W. Loening, R. Lanksch, Felix, Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J. Magn. Magn. Mater. 225, 118–126 (2001)

    Article  CAS  Google Scholar 

  4. K. Maier-Hauff, R. Rothe, B. Thiesen, A. Jordan, Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, 53–60 (2007)

    Article  CAS  Google Scholar 

  5. K. Maier-Hauff, R. Rothe, B. Thiesen, A. Jordan, H. Orawa, A. Jordan, Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J. Neurooncol. 103, 317–324 (2011)

    Article  Google Scholar 

  6. M. Johannsen, U. Gneveckow, B. Thiesen, N. Waldöfner, R. Scholz, S.A. Loening, P. Wust, Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur. Urol. 52, 1653–1662 (2007)

    Article  Google Scholar 

  7. R.K. Gil Christian, R. Medal, W.D. Shorey, R.C. Hanselman, J.C. Parrot, C.B. Taylor, Selective inductive heating of lymph nodes. Ann Surg. 146, 596–606 (1957)

    Article  Google Scholar 

  8. V.F. Castro, J. Celestino, A.A.A. Queiroz, F.G. Garcia, Propriedades magnéticas e biocompatíveis de nanocompósitos para utilização em magneto-hipertermia, Rev. Bras. Fís. Méd. 4, 79–82 (2010)

    Google Scholar 

  9. C.S.S.R. Kumar, F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Deliv. Rev. 63, 789–808 (2011)

    Article  CAS  Google Scholar 

  10. Z.A. Motlagh, M. Mozaffari, J. Amighian, Preparation of nano-sized Al-substituted yttrium iron garnets by the mechanochemical method and investigation of their magnetic properties. J. Magn. Magn. Mater. 321, 1980–1984 (2009)

    Article  Google Scholar 

  11. F. Bertaut, O.F. Forrat, Structure des ferrites ferrimagnetiques des terres rares. Compt. Rend. 242, 382–385 (1956)

    CAS  Google Scholar 

  12. Y.F. Chen, K.T. Wu, Y.D. Yao, C.H. Peng, W.S. Tse, The influence of Fe concentration on Y3Fe5–xAlxO12 garnets. Microelectron. Eng. 81, 329–335 (2005)

    Article  CAS  Google Scholar 

  13. M. Othman, M.F. Ain, N.S. Abdullah, Z.A. Ahmad, Studies on the formation of yttrium iron garnet (YIG) through stoichiometry modification prepared by conventional solid-state method. J. Eur. Ceram. Soc. 33, 1317–1324 (2013)

    Article  Google Scholar 

  14. Z. Cheng, H. Yang, Synthesis and magnetic properties of Sm–Y3Fe5O12 nanoparticles. Physica E. 39, 198–202 (2007)

    Article  CAS  Google Scholar 

  15. Z.A. Motlagh, M. Mozaffari, J. Amighian, A.F. Lehlooh, M. Awawdeh, S. Mahmood, Mössbauer studies of Y3Fe5–xAlxO12 nanopowders prepared by mechanochemical method. Hyperfine Interact. 198, 295–302 (2010)

    Article  Google Scholar 

  16. M.N. Akhtar, M.A. Khan, S.F. Shaukat, M.H. Asif, N. Nasir, G. Abbas, Nazir, Y3Fe5O12 nanoparticulate garnet ferrites: comprehensive study on the synthesis and characterization fabricated by various routes. J. Magn. Magn. Mater. 368, 393–400 (2014)

    Article  Google Scholar 

  17. R. Hergt, S. Dutz, R. Muller, M. Zeisberger, Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter. 18, S2919–S2934 (2006)

    Article  CAS  Google Scholar 

  18. M.N. Akhtar, M.A. Khan, M.R. Raza, M. Ahmad, S.F. Shaukat, M.H. Asif, M. Saleem, M.S. Nazir, Structural, morphological, dielectric and magnetic characterizations of Ni0.6Cu0.2Zn0.2Fe2O4 (NCZF/MWCNTs/PVDF) nanocomposites for multilayer chip inductor (MLCI) applications. Ceram. Int. 40, 15821–15829 (2014)

    Article  CAS  Google Scholar 

  19. F. Grasset, S. Mornet, A. Demourgues, J. Portier, J. Bonnet, A. Vekris, E. Duguet, Synthesis, magnetic properties, surface modification and cytotoxicity evaluation ofY3Fe5–xAlxO12 (0 ≤ x ≤ 2) garnet submicron particles for biomedical applications. J. Magn. Magn. Mater. 234, 409–418 (2001)

    Article  CAS  Google Scholar 

  20. H. Yu, L. Zeng, C. Lu, W. Zhang, G. Xu, Synthesis of nanocrystalline yttrium iron garnet by low temperature solid state reaction. Mater. Charact. 62, 378–381 (2011)

    Article  CAS  Google Scholar 

  21. D.T.T. Nguyet, N.P. Duong, T. Satoh, L.N. Anh, T.D. Hien, Temperature-dependent magnetic properties of yttrium iron garnet nanoparticles prepared by citrate sol–gel. J. Alloy. Compd. 541, 18–22 (2012)

    Article  CAS  Google Scholar 

  22. Y.-P. Fu, C.-H. Lin, P. Ko-Ying, Microwave-induced combustion synthesis of yttrium iron garnet nano-powders and their characterizations. J. Magn. Magn. Mater. 272–276, 2202–2204 (2004)

    Article  Google Scholar 

  23. P. Grosseau, A. Bachiorrini, B. Guilhot, Preparation of polycrystalline yttrium iron garnet ceramics. J. Therm. Anal. 46, 1633–1641 (1996)

    Article  CAS  Google Scholar 

  24. P. Vaqueiro, M.A. Lopez-Quintela, J. Rivas, Synthesis of yttrium iron garnet nanoparticles via coprecipitation in microemulsion. J. Mater. Chem. 7, 501–505 (1997)

    Article  CAS  Google Scholar 

  25. S. Taketomi, Y. Ozaki, K. Kawasaki, S. Yuasa, A.H. Miyaiwa, Transparent magnetic fluid: preparation of YIG ultrafine particles. J. Magn. Magn. Mater. 122, 6–10 (1993)

    Article  CAS  Google Scholar 

  26. S. Komarneni, Q.H. Li, R. Roy, Microwave-hydrothermal processing for synthesis of layered and network phosphates. J. Mater. Chem. 4, 1903–1906 (1994)

    Article  CAS  Google Scholar 

  27. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Article  CAS  Google Scholar 

  28. Y. Cui, C.M. Lieber, Functional nanoscale electronic devices assembled using silicon nanowire buiding blocks. Science 291, 851–853 (2001)

    Article  CAS  Google Scholar 

  29. J.T. Hu, O.Y. Min, P.D. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48–51 (1999)

    Article  CAS  Google Scholar 

  30. E.W. Dai, H.J. Wong, Y.Z. Lu, S.S. Fan, C.M. Lieber, Synthesis and characterization of carbide nanorods. Nature 375, 769–772 (1995)

    Article  CAS  Google Scholar 

  31. A. Sobhani-Nasaba, M. Rahimi-Nasrabadi, H. RezaNaderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189–196 (2018)

    Article  Google Scholar 

  32. E.-A. Mohammad, A. Sobhani-Nasabb, M. Rahimi-Nasrabadic, F. Ahmadid, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120–135 (2018)

    Article  Google Scholar 

  33. M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607–615 (2018)

    Article  Google Scholar 

  34. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol-gel. J. Mater. Sci. Mater. Electron. 28, 14965–14973 (2017)

    Article  CAS  Google Scholar 

  35. D.V.M. Paiva, M.A.S. Silva, T.S. Ribeiro, I.F. Vasconcelos, A.S.B. Sombra, P.B.A. Fechine, Novel magnetic-dielectric composite ceramic obtained from Y3Fe5O12 and CaTiO3. J. Alloy. Compd. 644, 763–769 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of this research project by the Brazilian research funding agency FAPESP 2014/16993-1. The funding was supported by FAPESP (Grant No. 2013/07296-2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Borsari or A. Z. Simões.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsari, E., Freire, B.G.G., Garcia, F.G. et al. Microwave-hydrothermal synthesis of Y3Fe3.35Al1.65O12 nanoparticles for magneto-hyperthermia application. J Mater Sci: Mater Electron 29, 18020–18029 (2018). https://doi.org/10.1007/s10854-018-9988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9988-x

Navigation