Skip to main content
Log in

Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 23 August 2018

This article has been updated

Abstract

The increase in photocatalytic activity of reduced graphene oxide–TiO2 heterostructures under ultraviolet and visible illumination is already well known, as the photocatalyst mechanism modifications with heterostructure formation. However, which step in the degradation mechanism is modified with reduced graphene oxide–TiO2 heterostructure formation has been not demonstrated yet. These specific modifications are caused by the alteration in reactive oxygen species production. In this way, the goal of this study is defined which reactive oxygen species are produced by reduced graphene oxide–TiO2 heterostructure in the photocatalytic mechanism. A fast synthesis method to obtain this heterostructure by the microwave-assisted solvothermal method is presented, obtaining an improvement of photocatalytic efficiency, under UV and visible illumination. The non-hydrolytic method favors a better distribution of TiO2 nanoparticles around the reduced graphene oxide structure and inhabits the charge carrier recombination, showing a faster electron transfer than TiO2 samples. The RhB discoloration mechanism confirms that the reduced graphene oxide presence modifies the main reactive oxygen species produced. Under UV illumination, O2H* radical is the dominant reactive oxygen species produced by TiO2. For the heterostructure, the direct oxidation by oxygen vacancy is the primary mechanism step. Under visible illumination, O2H* is the main reactive oxygen species for both materials. The results present a better understanding of principal reasons related to the improvement in photocatalytic activity and could be useful in semiconductor heterostructure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 23 August 2018

    The original version of this article contains a missed citation in the Material and Methods Section, GO synthesis.

References

  1. F. Pei, S. Xu, W. Zuo et al., Effective improvement of photocatalytic hydrogen evolution via a facile in-situ solvothermal N-doping strategy in N-TiO2/N-graphene nanocomposite. Int. J. Hydrog. Energy 39, 6845–6852 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.173

    Article  CAS  Google Scholar 

  2. P. Fernández-Ibáñez, M.I. Polo-López, S. Malato et al., Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem. Eng. J. 261, 36–44 (2014). https://doi.org/10.1016/j.cej.2014.06.089

    Article  CAS  Google Scholar 

  3. S. Huang, Z. Si, X. Li et al., A novel Au/r-GO/TNTs electrode for H2O2, O2 and nitrite detection. Sen. Actuators B 234, 264–272 (2016). https://doi.org/10.1016/j.snb.2016.04.167

    Article  CAS  Google Scholar 

  4. Q. Xiang, B. Cheng, J. Yu, Graphene-based photocatalysts for solar-fuel generation. Angew Chem. Int. Ed. (2015). https://doi.org/10.1002/anie.201411096

    Article  Google Scholar 

  5. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782 (2012). https://doi.org/10.1039/c1cs15172j

    Article  CAS  Google Scholar 

  6. J. Liu, H. Bai, Y. Wang et al., Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv. Funct. Mater. 20, 4175–4181 (2010). https://doi.org/10.1002/adfm.201001391

    Article  CAS  Google Scholar 

  7. A.H. Cheshme Khavar, G. Moussavi, A.R. Mahjoub, The preparation of TiO2@rGO nanocomposite efficiently activated with UVA/LED and H2O2 for high rate oxidation of acetaminophen: catalyst characterization and acetaminophen degradation and mineralization. Appl. Surf. Sci. 440, 963–973 (2018). https://doi.org/10.1016/j.apsusc.2018.01.238

    Article  CAS  Google Scholar 

  8. N. Sun, J. Ma, C. Wang et al., A facile and efficient method to directly synthesize TiO2/rGO with enhanced photocatalytic performance. Superlatt. Microstruct. 121, 1–8 (2018). https://doi.org/10.1016/J.SPMI.2018.07.017

    Article  CAS  Google Scholar 

  9. M. Dhanasekar, V. Jenefer, R.B. Nambiar et al., Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater. Res. Bull. 97, 238–243 (2018). https://doi.org/10.1016/j.materresbull.2017.08.056

    Article  CAS  Google Scholar 

  10. A.V.F.M.V. Ramana, R.S.T. Jadhav, G.S.G. Dae, Y. Kim, TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: effect of substrate. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9146-5

    Article  Google Scholar 

  11. B. Chai, J. Li, Q. Xu, K. Dai, Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity. Mater. Lett. 120, 177–181 (2014). https://doi.org/10.1016/j.matlet.2014.01.094

    Article  CAS  Google Scholar 

  12. M. Long, Y. Qin, C. Chen et al., Origin of visible light photoactivity of reduced graphene oxide/TiO2 by in situ hydrothermal growth of undergrown TiO2 with Graphene Oxide. J. Phys. Chem. C 117, 16734–16741 (2013)

    Article  CAS  Google Scholar 

  13. M. Andreozzi, M.G. Álvarez, S. Contreras et al., Treatment of saline produced water through photocatalysis using rGO–TiO2 nanocomposites. Catal Today (2018). https://doi.org/10.1016/j.cattod.2018.04.048

    Article  Google Scholar 

  14. Y. Yuan, Y. Leigh, A. Xuchuan, Experimental and theoretical studies of gold nanoparticle decorated zinc oxide nanoflakes with exposed {10 0} facets for butylamine sensing. Sens. Actuators B (2016). https://doi.org/10.1016/j.snb.2016.02.091

    Article  Google Scholar 

  15. D. Chen, H. Zhang, S. Hu, J. Li, Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO–TiO2 nanocomposites. J. Phys. Chem. C 112, 117–122 (2008). https://doi.org/10.1021/jp077236a

    Article  CAS  Google Scholar 

  16. A. Habib, T. Shahadat, N.M. Bahadur et al., Synthesis and characterization of ZnO–TiO2 nanocomposites and their application as photocatalysts. Int. Nano Lett. 3, 1–8 (2013). https://doi.org/10.1186/2228-5326-3-5

    Article  CAS  Google Scholar 

  17. A.K. Geim, K.S.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007). https://doi.org/10.1038/nmat1849

    Article  CAS  Google Scholar 

  18. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009). https://doi.org/10.1126/science.1158877

    Article  CAS  Google Scholar 

  19. D.P. Volanti, D. Keyson, J.A. Varela, E. Longo, Aparato assistido por microondas para síntese hidrotérmica de óxidos nanoestruturados. Universidade Estadual Paulista And Universidade Federal de São Carlos (Brasil). Br N. Pi0815393-0 07 Dez. 2010 (2008)

  20. G.B. Soares, B. Bravin, C.M.P. Vaz, C. Ribeiro, Facile synthesis of N-doped TiO2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties. Appl. Catal. B 106, 287–294 (2011). https://doi.org/10.1016/j.apcatb.2011.05.018

    Article  CAS  Google Scholar 

  21. M. Dawson, G.B. Soares, C. Ribeiro, Influence of calcination parameters on the synthesis of N-doped TiO2 by the polymeric precursors method. J. Solid State Chem. 215, 211–218 (2014). https://doi.org/10.1016/j.jssc.2014.03.044

    Article  CAS  Google Scholar 

  22. S.A. Bakar, G. Byzynski, C. Ribeiro, Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. J. Alloys Compd. 666, 38–49 (2016). https://doi.org/10.1016/j.jallcom.2016.01.112

    Article  CAS  Google Scholar 

  23. H. Wang, H. Gao, M. Chen et al., Microwave-assisted synthesis of reduced graphene oxide/titania nanocomposites as an adsorbent for methylene blue adsorption. Appl. Surf. Sci. 360, 840–848 (2016). https://doi.org/10.1016/j.apsusc.2015.11.075

    Article  CAS  Google Scholar 

  24. F. Liu, X. Yan, X. Chen et al., Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243–249 (2016). https://doi.org/10.1016/j.cattod.2015.07.012

    Article  CAS  Google Scholar 

  25. K.H. Leong, L.C. Sim, D. Bahnemann et al., Reduced graphene oxide and Ag wrapped TiO2 photocatalyst for enhanced visible light photocatalysis. Appl. Mater. 3, 104503 (2015). https://doi.org/10.1063/1.4926454

    Article  CAS  Google Scholar 

  26. M.Q. Yang, Y.J. Xu, Basic principles for observing the photosensitizer role of graphene in the graphene-semiconductor composite photocatalyst from a case study on graphene-ZnO. J. Phys. Chem. C 117, 21724–21734 (2013). https://doi.org/10.1021/jp408400c

    Article  CAS  Google Scholar 

  27. J. Qin, X. Zhang, C. Yang et al., ZnO microspheres-reduced graphene oxide nanocomposite for photocatalytic degradation of methylene blue dye. Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.09.043

    Article  Google Scholar 

  28. Y. Zhang, C. Xie, F.L. Gu et al., Significant visible-light photocatalytic enhancement in Rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene). J. Hazard. Mater. 315, 23–34 (2016). https://doi.org/10.1016/j.jhazmat.2016.04.068

    Article  CAS  Google Scholar 

  29. L.-L. Tan, W.-J. Ong, S.-P. Chai et al., Visible-light-active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction. Appl. Catal. B 179, 160–170 (2015). https://doi.org/10.1016/j.apcatb.2015.05.024

    Article  CAS  Google Scholar 

  30. A. Ambrosi, M. Pumera, Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. A 22, 153–159 (2016). https://doi.org/10.1002/chem.201503110

    Article  CAS  Google Scholar 

  31. K. Dhara, T. Ramachandran, B.G. Nair, T.G. Satheesh Babu, Single step synthesis of Au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J. Electroanal. Chem. 743, 1–9 (2015). https://doi.org/10.1016/j.jelechem.2015.02.005

    Article  CAS  Google Scholar 

  32. H. Yang, C. Shan, F. Li et al., Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem. Commun. (2009). https://doi.org/10.1039/b905085j

    Article  Google Scholar 

  33. X. Bai, C. Sun, D. Liu et al., Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension. Appl. Catal. B 204, 11–20 (2017). https://doi.org/10.1016/j.apcatb.2016.11.010

    Article  CAS  Google Scholar 

  34. H. Sun, S. Liu, S. Liu, S. Wang, A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue. Appl. Catal. B 146, 162–168 (2014). https://doi.org/10.1016/j.apcatb.2013.03.027

    Article  CAS  Google Scholar 

  35. M.E.D.G. Azenha, H.D. Burrows, L.M. Canle et al., Kinetic and mechanistic aspects of the direct photodegradation of atrazine, atraton, ametryn and 2-hydroxyatrazine by 254 nm light in aqueous solution. J. Phys. Org. Chem. 16, 498–503 (2003). https://doi.org/10.1002/poc.624

    Article  CAS  Google Scholar 

  36. W. Wang, J. Yu, Q. Xiang, B. Cheng, Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air. Appl. Catal. B 119–120, 109–116 (2012). https://doi.org/10.1016/j.apcatb.2012.02.035

    Article  CAS  Google Scholar 

  37. K. Zhou, Y. Zhu, X. Yang et al., Preparation of graphene–TiO2 composites with enhanced photocatalytic activity. N. J. Chem. 35, 353–359 (2011)

    Article  CAS  Google Scholar 

  38. V.R. Posa, V. Annavaram, J.R. Koduru et al., Preparation of graphene–TiO2 nanocomposite and photocatalytic degradation of Rhodamine-B under solar light irradiation. J. Exp. Nanosci. 11, 722–736 (2016). https://doi.org/10.1080/17458080.2016.1144937

    Article  CAS  Google Scholar 

  39. G. Peng, J.E. Ellis, G. Xu et al., In situ grown TiO2 nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation. ACS Appl. Mater. Interfaces 8, 7403–7410 (2016). https://doi.org/10.1021/acsami.6b01188

    Article  CAS  Google Scholar 

  40. G. Byzynski, C. Ribeiro, E. Longo, Blue to yellow photoluminescence emission and photocatalytic activity of nitrogen doping in TiO2 powders. Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/831930

    Article  Google Scholar 

  41. E. Cui, G. Lu, Enhanced surface electron transfer by fabricating a core/shell Ni@NiO cluster on TiO2 and its role on high efficient hydrogen generation under visible light irradiation. Int J Hydrog. Energy 39, 8959–8968 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.258

    Article  CAS  Google Scholar 

  42. D. Martín-Yerga, E.C. Rama, A. Costa-García, Electrochemical characterization of ordered mesoporous carbon screen-printed electrodes. J. Electrochem. Soc. 163, B176–B179 (2016). https://doi.org/10.1149/2.0871605jes

    Article  CAS  Google Scholar 

  43. Soares GB, Ribeiro RAP, De Lazaro SR, Ribeiro C, Photoelectrochemical and theoretical investigation of the photocatalytic activity of TiO2: N. RSC Adv. (2016). https://doi.org/10.1039/c6ra15825k

    Article  Google Scholar 

  44. J. Low, J. Yu, M. Jaroniec et al., Heterojunction photocatalysts. Adv. Mater. (2017). https://doi.org/10.1002/adma.201601694

    Article  Google Scholar 

  45. G.B. Soares, R.A.P. Ribeiro, S.R. de Lazaro, C. Ribeiro, Photoelectrochemical and theoretical investigation of the photocatalytic activity of TiO2: N. RSC Adv. (2016). https://doi.org/10.1039/c6ra15825k

    Article  Google Scholar 

  46. P. Wang, S. Zhan, Y. Xia et al., The fundamental role and mechanism of reduced graphene oxide in rGO/Pt–TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B 207, 335–346 (2017). https://doi.org/10.1016/j.apcatb.2017.02.031

    Article  CAS  Google Scholar 

  47. K.S. Divya, M.M. Xavier, P.V. Vandana et al., A quaternary TiO2/ZnO/RGO/Ag nanocomposite with enhanced visible light photocatalytic performance. N. J. Chem. 41, 6445–6454 (2017). https://doi.org/10.1039/C7NJ00495H

    Article  Google Scholar 

  48. Y. Yang, Q. Jin, D. Mao et al., Dually ordered porous TiO2–rGO composites with controllable light absorption properties for efficient solar energy conversion. Adv. Mater. (2016). https://doi.org/10.1002/adma.201604795

    Article  Google Scholar 

  49. X. Li, R. Shen, S. Ma et al., Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53–107 (2018). https://doi.org/10.1016/j.apsusc.2017.08.194

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge São Paulo Research Foundation (FAPESP), grant #CEPID 2013/07296-2, grant #2015/04511-5, grant #2014/17343-0, grant #2017/01267-1, grant #2012/26671-9. National Council for Scientific and Technological Development – CNPQ, grant #444926/2014-3. Authors thank Dr. Carlos J.L. Constantino and her student Sabrina A. Camacho for Raman measurements (FAPESP grant #2014/11410-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Byzynski.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 368 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byzynski, G., Volanti, D.P., Ribeiro, C. et al. Direct photo-oxidation and superoxide radical as major responsible for dye photodegradation mechanism promoted by TiO2–rGO heterostructure. J Mater Sci: Mater Electron 29, 17022–17037 (2018). https://doi.org/10.1007/s10854-018-9799-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9799-0

Navigation