Skip to main content
Log in

The effect of the diffusion creep behavior on the TSV-Cu protrusion morphology during annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As through-silicon vias (TSVs) are key structural elements of 3D integration and packaging, creep deformation, which causes TSV-Cu protrusion, is critical for TSV reliability. Here, the effect of the diffusion creep behavior on the TSV-Cu protrusion morphology is analyzed using experiment and simulation. The protrusion morphology of TSV-Cu after annealing treatment is examined using a white light interferometer. The diffusion creep mechanism of TSV-Cu is determined by observation of the TSV-Cu microstructure using a scanning electron microscopy and a focused ion beams. The TSV-Cu grain size is measured using an electron backscatter diffraction system. The diffusion creep rate model of TSV-Cu is deduced based on the energy balance theory and is introduced into the finite element model to clarify the influence of diffusion creep on TSV-Cu protrusion. It is determined that the diffusion creep of TSV-Cu is mainly caused by grain boundary diffusion and grain boundary sliding. The diffusion creep strain rate is positively correlated with the ambient temperature and the external load but negatively correlated with the grain size. The amount of TSV-Cu protrusion increases with decreasing grain size. The simulation results show that the “donut”-shaped protrusion morphology is more likely to occur in TSV-Cu with smaller grain sizes near the sidewall region of the via.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W.P. Dow et al., Highly selective Cu electrodeposition for filling through silicon holes. Electrochem. Solid State Lett. 14, D63 (2011)

    Article  CAS  Google Scholar 

  2. F. Che et al., Development of wafer-level warpage and stress modeling methodology and its application in process optimization for TSV wafers. IEEE Trans. Compon. Packag. Manuf. Technol. 2, 944 (2012)

    Article  Google Scholar 

  3. K.H. Lu et al., (2010), Thermal stress induced delamination of through silicon vias in 3-D interconnects, In: Proceedings of the electronic components and technology conference (ECTC), 2010, Las Vegas, pp 40

  4. H.Y. Tsai et al., Thermal stress and failure location analysis for through silicon via in 3D integration. J. Mech. 32, 47 (2016)

    Article  CAS  Google Scholar 

  5. H.H. Chang et al., The effect of mechanical stress on electromigration behavior. J. Mech. 31, 441 (2015)

    Article  CAS  Google Scholar 

  6. S. Chen et al., Protrusion of electroplated copper filled in through silicon vias during annealing process. Microelectron. Reliab. 63, 183 (2016)

    Article  CAS  Google Scholar 

  7. N. Ranganathan et al., A study of thermo-mechanical stress and its impact on through-silicon vias. J. Micromech. Microeng. 18, 075018 (2008)

    Article  Google Scholar 

  8. C.C. Lee et al., Impact of high density TSVs on the assembly of 3D-ICs packaging. Microelectron. Eng. 107, 101 (2013)

    Article  CAS  Google Scholar 

  9. S.P. Murarka, Multilevel interconnections for ULSI and GSI era. Mater. Sci. Eng. R. 19, 87 (1997)

    Article  Google Scholar 

  10. I. De Wolf et al., Cu pumping in TSVs: effect of pre-CMP thermal budget. Microelectron. Reliab. 51, 1856 (2011)

    Article  Google Scholar 

  11. F.X. Che et al., Study on Cu protrusion of through-silicon via. IEEE Trans. Compon. Packag. Manuf. Technol. 3, 732 (2013)

    Article  CAS  Google Scholar 

  12. A. Heryanto et al., Effect of copper TSV annealing on via protrusion for TSV wafer fabrication. J. Electron. Mater. 41, 1 (2012)

    Article  Google Scholar 

  13. S.Y. Chang et al., Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater. Sci. Eng. A 423, 52 (2006)

    Article  Google Scholar 

  14. K. Zhang et al., The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl. Phys. Lett. 85, 5197 (2004)

    Article  CAS  Google Scholar 

  15. V. Srivastava et al., The effect of low stresses on creep and surface profiles of thin copper wires. Acta Mater. 51, 4611 (2003)

    Article  CAS  Google Scholar 

  16. W. Wu et al., A study of creep behavior of TSV-Cu based on nanoindentaion creep test. J. Mech. 32, 717 (2016)

    Article  CAS  Google Scholar 

  17. F.R.N. Nabarro (1947), Dislocations in a simple cubic lattice. Proc. Phys. Soc. 1947, 256

    Article  Google Scholar 

  18. C. Herring, Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437 (1950)

    Article  Google Scholar 

  19. R.L. Coble, A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679 (1963)

    Article  Google Scholar 

  20. D. Hull et al., The growth of grain-boundary voids under stress. Philos. Mag. 4, 673 (1959)

    Article  CAS  Google Scholar 

  21. C. Okoro et al., Impact of the electrodeposition chemistry used for TSV filling on the microstructural and thermo-mechanical response of Cu. J. Mater. Sci. 46, 3868 (2011)

    Article  CAS  Google Scholar 

  22. G.S. Was (1993), The role of grain boundary chemistry and structure in the environmentally-assisted intergranular cracking of nickel-base alloys, Technical Report

  23. S. Onaka et al., Kinetics of diffusional creep discussed by energy dissipation and effect of grain-size distribution on the rate equations. Acta Mater. 49, 2161 (2001)

    Article  CAS  Google Scholar 

  24. T. Mori et al., Steady-state creep of a composite analyzed by an energy balance method. Philos. Mag. Lett. 78, 331 (1998)

    Article  CAS  Google Scholar 

  25. T. Mori et al., Overview no. 126 Stress relaxation by plastic flow, interfacial sliding and diffusion in an inclusion bearing material. Acta Mater. 45, 429 (1997)

    Article  CAS  Google Scholar 

  26. R. Sandström et al., The role of creep in stress strain curves for copper. J. Nucl. Mater. 422, 51 (2012)

    Article  Google Scholar 

  27. S. Onaka et al., Kinetics of stress relaxation caused by the combination of interfacial sliding and diffusion: two-dimensional analysis. Acta Mater. 46, 3821 (1998)

    Article  CAS  Google Scholar 

  28. W. Wu et al., Experimental and numerical investigation of mechanical properties of electroplating copper filled in through silicon vias. IEEE Trans. Compon. Packag. Manuf. Technol. 6, 23 (2016)

    Article  CAS  Google Scholar 

  29. S. Deser et al., Three-dimensional Einstein gravity: dynamics of flat space. Ann. Phys. 152, 220 (1984)

    Article  Google Scholar 

  30. R.A. Carolan et al., Effect of grain boundary sliding on the creep micro-deformation of copper. Mater. Trans. JIM 32, 67 (1991)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (NSFC) No. 11502006, Beijing Natural Science Foundation No. 2182011, National Natural Science Foundation of China (NSFC) No. 11672009, and the Beijing Key Laboratory of Advanced Manufacturing Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, T., Qin, F., Chen, S. et al. The effect of the diffusion creep behavior on the TSV-Cu protrusion morphology during annealing. J Mater Sci: Mater Electron 29, 16305–16316 (2018). https://doi.org/10.1007/s10854-018-9720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9720-x

Navigation