Skip to main content
Log in

Photovoltaic properties of nanostructured copper sulfide incorporated silicon rich composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present experimentation, the photovoltaic properties of CuS incorporated SiO2 nanocomposites were investigated. The nanocomposite between CuS and SiO2 were prepared by solid state diffusion method. During the process of solid state diffusion, silicic acid was used as source of silicon. The prepared composites characterized by X-ray diffractions, scanning electron microscopy, ultraviolet–visible spectrophotometers, Raman spectroscopy, photoluminescence spectroscopy and thermal analysis and photovoltaic measurements. IV characteristics of PV cell shows that performance of cell is sensitive to concentration of CuS in composite. The optimized power conversion efficiency was 1.11% found to be for 15 wt% CuS loaded SiO2 composite having fill factor 0.189 under the power incidence of 0.0104 W/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2, 96–102 (2010)

    Article  Google Scholar 

  2. H. Rao, W. Sun, S. Ye, W. Yan, Y. Li, H. Peng, Z. Liu, Z. Bian, C. Huang, Solution-processed CuS NPs as an inorganic hole-selective contact material for inverted planar perovskite solar cells. ACS Appl. Mater. Interfaces 8, 7800–7805 (2016)

    Article  CAS  Google Scholar 

  3. M. Kim, A. Ochirbat, H.J. Lee, CuS/CdS quantum dot composite sensitizer and its applications to various TiO2 mesoporous film-based solar cell devices. Langmuir 31, 7609–7615 (2015)

    Article  CAS  Google Scholar 

  4. X. Xu, J. Bullock, L.T. Schelhas, E.Z. Stutz, J.J. Fonseca, M. Hettick, V.L. Pool, K.F. Tai, M.F. Toney, X. Fang, A. Javey, L.H. Wong, J.W. Ager, Chemical bath deposition of p-type transparent, highly conducting (CuS)x:(ZnS)1–x nanocomposite thin films and fabrication of Si heterojunction solar cells. Nano Lett. 16, 1925–1932 (2016)

    Article  CAS  Google Scholar 

  5. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Synthesis and photovoltaic application of copper(I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008)

    Article  CAS  Google Scholar 

  6. L. Isac, I. Popovici, A. Enesca, A. Duta, Copper sulfide (CuxS) thin films as possible p-type absorbers in 3D solar cells. Energy Procedia 2, 71–78 (2010)

    Article  CAS  Google Scholar 

  7. M. Sabet, M. Salavati-Niasari, F. Davar, Facile one-step microwave to prepare CuInS2/CuS nanocomposite for solar cells. IET Micro Nano Lett. 6, 904–908 (2011)

    Article  CAS  Google Scholar 

  8. F. Ghribi, A. Alyamani, Z. Ben Ayadi, K. Djessas, L.E.L. Mir, Study of CuS thin films for solar cell applications sputtered from nanoparticles synthesised by hydrothermal route. Energy Procedia 84, 197–203 (2015)

    Article  CAS  Google Scholar 

  9. M.A. Sangamesha, K. Pushpalatha, G.L. Shekar, S. Shamsundar, Preparation and characterization of nanocrystalline CuS thin films for dye-sensitized solar cells. ISRN Nanomater. 2013, 829430–829438 (2013)

    Article  Google Scholar 

  10. K.R. Nemade, S.A. Waghuley, Highly responsive carbon dioxide sensing by graphene/Al2O3 quantum dots composites at low operable temperature. Indian J. Phys. 88, 577–583 (2014)

    Article  CAS  Google Scholar 

  11. K.R. Nemade, S.A. Waghuley, Band gap engineering of CuS nanoparticles for artificial photosynthesis. Mater. Sci. Semicond. Process. 39, 781–785 (2015)

    Article  CAS  Google Scholar 

  12. K.R. Nemade, R.V. Barde, S.A. Waghuley, Photocatalytic study of alumina–zirconia ceramic nanocomposite synthesized by spray pyrolysis. Ceram. Int. 41, 4836–4840 (2015)

    Article  CAS  Google Scholar 

  13. S. Ou, Q. Xie, D. Ma, J. Liang, X. Hu, W. Yu, Y. Qian, A precursor decomposition route to polycrystalline CuS nanorods. Mater. Chem. Phys. 94, 460–466 (2005)

    Article  CAS  Google Scholar 

  14. J. Serrano, A. Cantarero, M. Cardona, N. Garro, R. Lauck, R.E. Tallman, T.M. Ritter, B.A. Weinstein, Raman scattering in β-Zn. Phys. Rev. B 69, 014301–014307 (2004)

    Article  Google Scholar 

  15. S.Y. Wang, W. Wang, Z.-H. Lu, Asynchronous-pulse ultrasonic spray pyrolysis deposition of CuS (x = 1, 2) thin films. Mater. Sci. Eng. B103, 184–188 (2003)

    Article  CAS  Google Scholar 

  16. A. Milekhin, L. Sveshnikova, T. Duda, N. Surovtsev, S. Adichtchev, L. Ding, D.R.T. Zahn, Vibrational spectra of quantum dots formed by Langmuir–Blodgett technique, J. Vac. Sci. Technol. B 28, C5E22–C5E26 (2010)

    Article  CAS  Google Scholar 

  17. M. Nafees, M. Ikram, S. Alia, Thermal behavior and decomposition of copper sulfide nanomaterial synthesized by aqueous sol method. Dig. J. Nanomater. Biostruct. 10, 635–641 (2015)

    Google Scholar 

  18. T. Salmi, M. Bouzguenda, A. Gastli, A. Masmoudi, MATLAB/simulink based modelling of solar photovoltaic cell. Int. J. Renew. Energy Res. 2, 213–218 (2012)

    Google Scholar 

  19. M. Seifi, A. Soh, N. Izzrib. A. Wahab, M.K.B. Hassan, A comparative study of PV models in Matlab/Simulink. Int. J. Electr. Robot. Electron. Commun. Eng. 7, 97–102 (2013)

    Google Scholar 

  20. G.L. Kabongo, P.S. Mbule, G.H. Mhlongo, B.M. Mothudi, K.T. Hillie, M.S. Dhlamini, Photoluminescence quenching and enhanced optical conductivity of P3HT-derived Ho3+-doped ZnO nanostructures. Nanoscale Res. Lett. 11, 418–426 (2016)

    Article  Google Scholar 

  21. I. Mora-Sero, S. Gimenez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gomez, J. Bisquert, Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19, 424007–442014 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are very much thankful to the Head, Department of Physics, Sant Gadge Baba Amravati University, Amravati, India, for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep A. Waghuley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kute, A.M., Waghuley, S.A. Photovoltaic properties of nanostructured copper sulfide incorporated silicon rich composites. J Mater Sci: Mater Electron 29, 16199–16206 (2018). https://doi.org/10.1007/s10854-018-9709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9709-5

Navigation