Skip to main content
Log in

Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work reports structural and electrical properties of ZnO thin film deposited by reactive RF sputtering at the room temperature, for thin film transistor (TFT) applications. To study the thickness dependent effect, ZnO thin film of thicknesses 100, 200 and 800 nm were deposited over p-type silicon substrate. Structural properties of thin films have been characterized using X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). XRD analysis of 100 and 200 nm thick films shows dominant cubic phase of ZnO along with small presence of ZnO2, while; XRD analysis of 800 nm thick film confirms strong c-axis growth of wurtzite (W) ZnO. The XRD result confirm the polycrystalline nature of the thin film and shows that crystallinity improves with the film thickness. The AFM results confirm high step coverage of deposited thin films. From the thermionic transport model across the grain boundary it was observed that with an increase in film thickness mobility of carriers increases. The sheet resistance of undoped 100 and 200 nm ZnO film is found to be approximately 7 × 1011 Ω/□; while, the sheet resistance of 800 nm thick ZnO film shows almost 10 time reduction to 6.025 × 1010 Ω/□, owing to its improved crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, R. Martins, Appl. Phys. A 96, 197 (2009)

    Article  Google Scholar 

  2. M. Bender, E. Fortunato, P. Nunes, I. Ferreira, A. Marques, R. Martins, N. Katsarakis, V. Cimalla, G. Kiriakidis, Jpn. J. Appl. Phys. 42, L435 (2003)

    Article  Google Scholar 

  3. B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, J. Phys. D Appl. Phys. 36, L105 (2003)

    Article  Google Scholar 

  4. K. Kandpal, N. Gupta, J. Mater. Sci. Mater. Electron. 28, 16013 (2017)

    Article  Google Scholar 

  5. K. Ellmer, A. Klein, B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells. Springer Series in Materials Science, 104 (Springer, Amsterdam, 2008)

    Book  Google Scholar 

  6. J.-Y. Kwon, D.-J. Lee, K.-B. Kim, Electron. Mater. Lett. 7, 1 (2011)

    Article  Google Scholar 

  7. G.H. Lee, T. Kawazoe, M. Ohtsu, Solid State Commun. 124, 163 (2002)

    Article  Google Scholar 

  8. Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen, M. Wraback, J. Electron. Mater. 29, 69 (2000)

    Article  Google Scholar 

  9. E.M.C. Fortunato, A. Pimentel, A.M.F. Gonçalves, A.J.S. Marques, L.M.N. Pereira, R.F.P. Martins, Adv. Mater. 17, 590 (2005)

    Article  Google Scholar 

  10. W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films 506, 180 (2006)

    Article  Google Scholar 

  11. D. Han, Y. Wang, S. Zhang, L. Sun, R. Han, S. Matsumoto, Y. Ino, Sci. China Inf. Sci. 55, 951 (2012)

    Article  Google Scholar 

  12. M. Vishwas, K.N. Rao, A.R. Phani, K.V.A. Gowda, R.P.S. Chakradhar, J. Mater. Sci. Mater. Electron. 22, 1415 (2011)

    Article  Google Scholar 

  13. J. Singh, S. Ranwa, J. Akhtar, M. Kumar, AIP Adv. 5, 67140 (2015)

    Article  Google Scholar 

  14. D. Zagorac, J.C. Schön, J. Zagorac, M. Jansen, Phys. Rev. B 89, 75201 (2014)

    Article  Google Scholar 

  15. S. Pat, R. Mohammadigharehbagh, S. Özen, V. Şenay, H.H. Yudar, Ş. Korkmaz, Vacuum 141, 210 (2017)

    Article  Google Scholar 

  16. A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 4 (2007)

    Article  Google Scholar 

  17. S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)

    Article  Google Scholar 

  18. C. Periasamy, R. Prakash, P. Chakrabarti, J. Mater. Sci. Mater. Electron. 21, 309 (2010)

    Article  Google Scholar 

  19. J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  Google Scholar 

  20. F.M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, M. Kawasaki, J. Appl. Phys. 94, 7768 (2003)

    Article  Google Scholar 

  21. Z. Zhang, C. Bao, Q. Li, S. Ma, S. Hou, J. Mater. Sci. Mater. Electron. 23, 376 (2012)

    Article  Google Scholar 

  22. X.-R. Deng, H. Deng, M. Wei, J.-J. Chen, J. Mater. Sci. Mater. Electron. 23, 413 (2012)

    Article  Google Scholar 

  23. G.Z. Xing, B. Yao, C.X. Cong, T. Yang, Y.P. Xie, B.H. Li, D.Z. Shen, J. Alloys Compd. 457, 36 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

A portion of this research work was presented at the 17th International Conference of Thin Films (ICTF-2017), National Physical Laboratory (NPL) New Delhi, India. Authors also would like to acknowledge CSIR–CEERI (Central Electronics Engineering Research Institute) Pilani, India and Material Research Center MNIT Jaipur, India for providing the experimental facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavindra Kandpal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandpal, K., Singh, J., Gupta, N. et al. Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J Mater Sci: Mater Electron 29, 14501–14507 (2018). https://doi.org/10.1007/s10854-018-9584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9584-0

Navigation