Skip to main content
Log in

High-performance potassium sodium niobate-based lead-free materials without antimony

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1−xy)(K0.45Na0.55)NbO3yBi0.5Na0.5ZrO3xBaHfO3–0.2%MnO2 ceramics without antimony have been fabricated by the conventional solid-state method, and influences of Bi0.5Na0.5ZrO3 and BaHfO3 contents on their structure and electrical properties are studied. Composition modification can result in the formation of rhombohedral–orthorhombic–tetragonal phase coexistence in the ceramics (y = 0.04 and 0.01 ≤ x ≤ 0.02 as well as x = 0.01 and 0.04 ≤ y ≤ 0.045). In the region of this phase boundary, the ceramics exhibit both enhanced piezoelectric properties (d33 ~ 385 pC/N, kp ~ 51%, S ~ 0.157%) and high Curie temperature (TC ~ 320 °C). Especially, good comprehensive properties and the absence of antimony make the material more environmentally friendly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Wu, J. Wu, D. Xiao, J. Zhu, Modification of both d 33 and T C in a potassium–sodium niobate ternary system. Dalton Trans. 44, 21141–21152 (2015)

    Article  Google Scholar 

  2. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  Google Scholar 

  3. S.-E. Park, T.R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82(4), 1804–1811 (1997)

    Article  Google Scholar 

  4. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115(7), 2559–2595 (2015)

    Article  Google Scholar 

  5. J. Rödel, W. Jo, K.T. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92(6), 1153–1177 (2009)

    Article  Google Scholar 

  6. P. Bijumon, V. Kohli, O. Parkash, M. Varma, M. Sebastian, Dielectric properties of Ba5MTi3A7O30 [M = Ce, Pr, Nd, Sm, Gd, Dy and Bi; A = Nb, Ta] ceramics. Mater. Sci. Eng. B 113(1), 13–18 (2004)

    Article  Google Scholar 

  7. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou, X. Wang, Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136(7), 2905–2910 (2014)

    Article  Google Scholar 

  8. R. Zuo, J. Fu, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3–LiTaO3–BaZrO3 lead-free ceramics. J. Am. Ceram. Soc. 94(5), 1467–1470 (2011)

    Article  Google Scholar 

  9. Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004)

    Article  Google Scholar 

  10. D. Lin, K. Kwok, H.L. Chan, Dielectric and piezoelectric properties of K0.5Na0.5NbO3–AgSbO3 lead-free ceramics. J. Appl. Phys. 106(3), 034102 (2009)

    Article  Google Scholar 

  11. P. Palei, P. Kumar, Effect of silver content on the phase transition and electrical properties of 0.95[(K0. 5Na0. 5)NbO3]–0.05LiSbO3 ceramics. Solid State Sci. 14(9), 1338–1342 (2012)

    Article  Google Scholar 

  12. Y. Zhao, R. Huang, R. Liu, X. Wang, H. Zhou, Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na, K)NbO3 ceramics by optimizing sintering temperature. Ceram. Int. 39(1), 425–429 (2013)

    Article  Google Scholar 

  13. Y. Yuan, J. Wu, T. Hong, X. Lv, X. Wang, X. Lou, Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1 – xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics. J. Appl. Phys. 117(8), 239–4129 (2015)

    Article  Google Scholar 

  14. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432(7013), 84–87 (2004)

    Article  Google Scholar 

  15. P. Palei, P. Kumar, D.K. Agrawal, Structural and electrical properties of microwave processed Ag modified KNN-LS ceramics. J. Microw. Power Electromagn. Energy 46(2), 76–82 (2012)

    Article  Google Scholar 

  16. T. Zheng, J. Wu, D. Xiao, Strong piezoelectricity in (1 −x)(K0.4Na0.6)(Nb0.96Sb0.04)O3xBi0.5K0.5Zr1–ySnyO3 lead-free binary system: identification and role of multiphase coexistence. ACS Appl. Mater. Interface 7(10), 5927–5937 (2015)

    Article  Google Scholar 

  17. C. Wang, Y. Hou, H. Ge, M. Zhu, H. Wang, H. Yan, Sol–gel synthesis and characterization of lead-free LNKN nanocrystalline powder. J. Cryst. Growth 310(22), 4635–4639 (2008)

    Article  Google Scholar 

  18. B.P. Zhang, J.F. Li, K. Wang, H. Zhang, Compositional dependence of piezoelectric properties in NaxK1–xNbO3 lead-free ceramics prepared by spark plasma sintering. J. Am. Ceram. Soc. 89(5), 1605–1609 (2006)

    Article  Google Scholar 

  19. D. Lv, R. Zuo, Evolution of crystallographic grain orientation and anisotropic properties of (K0.5Na0.5)NbO3 ceramics using BaTiO3 templates by reactive templated grain growth. J. Alloys Compd. 560, 62–66 (2013)

    Article  Google Scholar 

  20. W. Liang, W. Wu, D. Xiao, J. Zhu, Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J. Am. Ceram. Soc. 94(12), 4317–4322 (2011)

    Article  Google Scholar 

  21. X. Cheng, J. Wu, T. Zheng, Rhombohedral-tetragonal phase coexistence and piezoelectric properties based on potassium–sodium niobate ternary system. J. Alloys Compd. 610, 62–66 (2013)

    Google Scholar 

  22. X. Wang, J. Wu, X. Cheng, B. Zhang, J. Zhu, D. Xiao, Compositional dependence of phase structure and electrical properties in (K0.50Na0.50)0.97Bi0.01(Nb1 – xZrx)O3 lead-free ceramics. Ceram. Int. 39(7), 8021–8024 (2013)

    Article  Google Scholar 

  23. W. Yang, D. Jin, T. Wang, J. Cheng, Effect of oxide dopants on the structure and electrical properties of (Na0.5K0.5)NbO3–LiSbO3 lead-free piezoelectric ceramics. Physica B 405(7), 1918–1921 (2010)

    Article  Google Scholar 

  24. R. Zuo, C. Ye, X. Fang, Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3–BiScO3 ceramics. Jpn. J. Appl. Phys. 46, 6733–6736 (2007)

    Article  Google Scholar 

  25. F. Li, D. Xiao, J. Wu, Z. Wang, C. Liu, J. Zhu, Phase structure and electrical properties of (K0.5Na0.5)NbO3–(Bi0.5Na0.5) ZrO3 lead-free ceramics with a sintering aid of ZnO. Ceram. Int. 40, 14601–14605 (2014)

    Article  Google Scholar 

  26. S. Feng, D. Xiao, J. Wu, F. Li, M. Xiao, J. Zhu, Influence of K/Na ratio on phase structure and electrical properties of 0.96 (KxNa1–x)NbO3–0.04(Bi0.5Na0.5)ZrO3 lead-free ceramics. J. Electroceram. 34, 142–149 (2015)

    Article  Google Scholar 

  27. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J. Zhu, X. Wang, X. Lou, High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3–Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J. Mater. Chem. C. 2, 8796 (2014)

    Article  Google Scholar 

  28. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138(47), 15459–15464 (2016)

    Article  Google Scholar 

  29. Q. Liu, J.F. Li, L. Zhao, Y. Zhang, J. Gao, W. Sun, K. Wang, L. Li, Niobate-based lead-free piezoceramics: a diffused phase transition boundary leading to temperature-insensitive high piezoelectric voltage coefficients. J. Mater. Chem. C. 6, 1116 (2018)

    Article  Google Scholar 

  30. H. Tao, J. Wu, T. Zheng, X. Wang, X. Lou, New (1 – x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: phase boundary and their electrical properties. J. Appl. Phys. 118(4), 044102 (2015)

    Article  Google Scholar 

  31. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, X. Lou, New lead-free piezoelectric ceramics based on (K0.48Na0.52)(Nb0.95Ta0.05)O3–Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3. Dalton Trans. 43(9), 3434–3442 (2014)

    Article  Google Scholar 

  32. X. Lv, J. Wu, S. Yang, D. Xiao, J. Zhu, Identification of phase boundaries and electrical properties in ternary potassium–sodium niobate-based ceramics. Appl. Mater. Interfaces 8, 18943–18953 (2016)

    Article  Google Scholar 

  33. K. Wang, F. Yao, J. Koruza et al., Electromechanical properties of CaZrO3 modified (K, Na)NbO3-based lead-free piezoceramics under uniaxial stress conditions. J. Am. Ceram. Soc. 100, 2116–2122 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC Nos. 51722208 and 51332003), the Key Technologies Research and Development Program of Sichuan Province (No. 2018JY0007) and the Fundamental Research Funds for the Central Universities (2012017yjsy111). Authors thank Mrs. Wang Hui (Analytical & Testing Center of Sichuan University) for performing the FE-SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiagang Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Zheng, T., Xie, R. et al. High-performance potassium sodium niobate-based lead-free materials without antimony. J Mater Sci: Mater Electron 29, 14487–14494 (2018). https://doi.org/10.1007/s10854-018-9582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9582-2

Navigation