Skip to main content
Log in

Structural, Raman spectroscopic and microwave dielectric studies on (1 − x) NiZrNb2O8 − x ZnTa2O6

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x) NiZrNb2O8 − x ZnTa2O6 microwave dielectric ceramics were prepared via the conventional solid-state reaction route. Structural and lattice parameters of the (1 − x) NiZrNb2O8 − x ZnTa2O6 ceramics were analyzed through X-ray diffraction, Raman spectra, and scanning electron microscopy. The results showed that there were serious ionic diffusion and solid solution reaction in the composite ceramics. The substitution of Ni2+, Zr4+, and Zn2+ at A-sites and the substitution of Nb5+ and Ta5+ at B-sites led to the change of the lattice parameters. There was a gradual transformation in crystal structure from monoclinic phase into Tri-αPbO2 phase with the increasing ZnTa2O6 content. With the increase of x value from 0 to 1, the εr value increased from 23.76 to 35.71 and the Q × ƒ value increased from 32107 to 46709 GHz. The temperature frequency resonance coefficient near zero could be obtained at x = 0.8. The 0.2NiZrNb2O8 − 0.8ZnTa2O6 ceramics were obtained at 1275 °C with excellent microwave dielectric properties: εr ~ 33.69, Q × ƒ ~ 37,529 GHz and τƒ ~ + 2.56 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Zhang, L. Liu, M. Xiao, J. Mater. Sci. 28, 5057–5063 (2018)

    Google Scholar 

  2. T. Xie, L. Hao, L. Zhang, H. Ren, M. Dang, S. Jiang, X. Zhao, F. Meng, H. Lin, J. Mater. Sci. 29, 7114–7118 (2018)

    Google Scholar 

  3. Q. Deng, C. Huang, H. Wang, L. Zhao, C. Shen, J. Mater. Sci. 29, 4035–4040 (2018)

    Google Scholar 

  4. H. Wu, E.S. Kim, Ceram. Int. 42, 5785–5791 (2016)

    Article  Google Scholar 

  5. W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, D.C. Guo, J. Alloys. Compd. 656, 470–475 (2016)

    Article  Google Scholar 

  6. Z. Fu, J. Ma, P. Liu, Y. Liu, Mater. Chem. Phys. 200, 264–269 (2017)

    Article  Google Scholar 

  7. M. Dang, H. Ren, X. Yao, H. Peng, T. Xie, H. Lin, L. Luo, J. Am. Cream. Soc. 101, 3026–3031 (2018)

    Article  Google Scholar 

  8. W. Wang, W. Bai, B. Shen, J. Zhai, Ceram. Int. 41, S435–S440 (2015)

    Article  Google Scholar 

  9. J. Ma, Z. Fu, P. Liu, L. Zhao, B. Guo, J. Alloys Compd. 709, 299–303 (2017)

    Article  Google Scholar 

  10. A. Manan, Z. Ullah, A.S. Ahmad, A. Ullah, D.F. Khan, A. Hussain, M.U. Khan, J. Adv. Ceram. 7, 72–78 (2018)

    Article  Google Scholar 

  11. G. Zhang, J. Guo, X. Yuan, H. Wang, J. Eur. Ceram. Soc. 38, 813–816 (2018)

    Article  Google Scholar 

  12. Y. Lai, C. Hong, L. Jin, X. Tang, H. Zhang, X. Huang, J. Li, H. Su, Ceram. Int. 43, 16167–16173 (2017)

    Article  Google Scholar 

  13. P.L. Wise, I.M. Reaney, W.E. Lee, J. Mater. Res. 17, 2033–2040 (2002)

    Article  Google Scholar 

  14. E.S. Kim, B.S. Chun, D.H. Kang, J. Eur. Ceram. Soc. 27, 3005–3010 (2007)

    Article  Google Scholar 

  15. H. Lee, I.T. Kim, K.S. Hong, Jpn. J. Appl. Phys. 36, 1318–1320 (1997)

    Article  Google Scholar 

  16. B.H. Toby, J. Appl. Cryst. 34, 210–213 (2001)

    Article  Google Scholar 

  17. M. Daturi, G. Busca, M.M. Borel, A. Leclaire, P. Piaggio, J. Phys. Chem. B101, 4358–4369 (1997)

    Article  Google Scholar 

  18. B.W. Hakki, P.D. Coleman, IEE Trans. Microw. Theory 8, 402–410 (1960)

    Article  Google Scholar 

  19. W.E. Courtney, IEEE Trans. Microw. Theory 18, 476–485 (1970)

    Article  Google Scholar 

  20. Y. Kobayashiy, M. Katoh, IEEE Trans. Microw. Theory 33, 586–592 (1985)

    Article  Google Scholar 

  21. M. Wu, Y. Zhang, J. Chen, M. Xiang, J. Alloys Compd. 747, 394–400 (2018)

    Article  Google Scholar 

  22. H. Lee, K.S. Hong, I.T. Kim, J. Mater. Res. 12, 1437–1440 (1997)

    Article  Google Scholar 

  23. C.L. Huang, J.Y. Chen, J. Am. Cream. Soc. 92, 1845–1848 (2010)

    Article  Google Scholar 

  24. S. Keshri, K. Singh, Phase Transit. 90, 1121–1127 (2017)

    Article  Google Scholar 

  25. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  26. S.D. Ramarao, V.R.K. Murthy, Dalton Trans. 44, 2311–2324 (2015)

    Article  Google Scholar 

  27. Y. Zhang, Y. Zhang, M. Xiang, J. Eur. Ceram. Soc. 36, 1945–1951 (2016)

    Article  Google Scholar 

  28. H.T. Wu, Z.B. Feng, Q.J. Mei, J.D. Guo, J.X. Bi, J. Alloys Compds. 648, 368–373 (2015)

    Article  Google Scholar 

  29. D.L. Rousseau, R.P. Bauman, S.P.S. Porto, J. Raman Spectrosc. 10, 253–290 (1981)

    Article  Google Scholar 

  30. W.S. Kim, T.H. Kim, E.S. Kim, K.H. Yoon, Jpn. J. Appl. Phys. 37, 5367–5371 (1998)

    Article  Google Scholar 

  31. D.A. Sagala, S. Nambu, J. Am. Ceram. Soc. 75, 2573–2575 (1992)

    Article  Google Scholar 

  32. E.L. Colla, I.M. Reaney, N. Setter, J. Appl. Phys. 74, 3414–3425 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (No. 51772022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhang, Y. & Xiang, M. Structural, Raman spectroscopic and microwave dielectric studies on (1 − x) NiZrNb2O8 − x ZnTa2O6. J Mater Sci: Mater Electron 29, 14471–14478 (2018). https://doi.org/10.1007/s10854-018-9580-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9580-4

Navigation