Skip to main content
Log in

Electrical properties and impedance spectroscopy of crystallographically textured 0.675 [Pb(Mg1/3Nb2/3)O3]-0.325 [PbTiO3] ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Crystallographically \(\left\langle {00{\text{1}}} \right\rangle\)-textured lead magnesium niobate (PMN)—lead titanate (PT) solid solution in the ratio of 0.675PMN-0.325PT was fabricated by tape-casting method using barium titanate (BaTiO3-BT) templates. Random PMN-PT with the same composition was also produced by tape-casting method for comparison. According to electromechanical and dielectric investigations, textured PMN-PT ceramics produced at 1150 °C for 2 h in oxygen atmosphere with 1 vol% BT were found to display the optimum properties. Dielectric constant, dielectric loss and piezoelectric coefficient of these samples were found to be as 1950, 0.002 and 700 pC/N, respectively. The impedance spectroscopy of the samples was conducted and the results of measurements taken at 300 and 500 °C were compared. A significant decrease in the electrical conductivity was observed with the development of texture in PMN-PT. The slightly depressed semicircles that were obtained from Nyquist diagrams indicated non-Debye-type relaxation with a distribution of relaxation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Shirane, S. Hoshino, J. Phys. Soc. Jpn. 6, 265 (1951)

    Article  Google Scholar 

  2. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971), p. 135

    Google Scholar 

  3. Y. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 1784 (2011)

    Article  Google Scholar 

  4. R.A. Islam, S. Priya, Appl. Phys. Lett. 88, 032903 (2006)

    Article  Google Scholar 

  5. S.S. Chandratreya, R.M. Fulrath, J.A. Pask, J. Am. Ceram. Soc. 64, 422 (1981)

    Article  Google Scholar 

  6. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687 (2000)

    Article  Google Scholar 

  7. R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, New York, 2004)

    Google Scholar 

  8. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804 (1997)

    Article  Google Scholar 

  9. S.E. Park, T.R. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997)

    Article  Google Scholar 

  10. N. Yamamotoa, Y. Yamashita, Y. Hosonoa, K. Itsumia, Sens. Actuators A 200, 16 (2013)

    Article  Google Scholar 

  11. S. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)

    Article  Google Scholar 

  12. G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, K.S. Oh, Crit. Rev. Solid State Mater. Sci. 29, 45 (2004)

    Article  Google Scholar 

  13. K.T. Zawilski, M.C.C. Custodio, R.C. DeMattei, S.-G. Lee, R.G. Monteiro, H. Odagawa, R.S. Feigelson, J.Cryst. Growth 258, 353 (2003)

    Article  Google Scholar 

  14. Y. Chang, Y. Sun, J. Wu, X. Wang, S. Zhang, B. Yang, G.L. Messing, W. Cao, J. Eur. Ceram. Soc. 36, 1973 (2016)

    Article  Google Scholar 

  15. T. Richter, S. Denneler, C. Schuh, E. Suvaci, R. Moss, J. Am. Ceram. Soc. 91, 929 (2008)

    Article  Google Scholar 

  16. E.M. Sabolsky, S. Trolier-McKinstry, G.L. Messing, J. Appl. Phys. 93, 4072 (2003)

    Article  Google Scholar 

  17. K.H. Brosnan, Processing, properties, and application of textured 0.72Pb(Mg1/3Nb2/3)O3-0.28PbTiO3 ceramics. Ph.D Dissertation, The Pennsylvania State University, University Park, PA, 2007

  18. S.F. Poterala, S. Trolier-McKinstry, R.J. Meyer, G.L. Messing, J. Appl. Phys. 110, 014105 (2011)

    Article  Google Scholar 

  19. N.V. Prasad, M.C. Sekhar, G.S. Kumar, Ferroelectrics 366, 55 (2008)

    Article  Google Scholar 

  20. E. Mensur Alkoy, A. Berksoy-Yavuz, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59, 2121 (2012)

    Article  Google Scholar 

  21. E. Mensur-Alkoy, A. Berksoy-Yavuz, S. Alkoy, Ferroelectrics 447, 95 (2013)

    Article  Google Scholar 

  22. M.A.L. Nobre, S. Lafredi, Catal. Today 78, 529 (2003)

    Article  Google Scholar 

  23. N. Hirose, A. West, J. Am. Ceram. Soc. 79, 1633 (1996)

    Article  Google Scholar 

  24. S.L. Swartz, T.R. Shrout, Mater. Res. Bull. 17, 1245 (1982)

    Article  Google Scholar 

  25. D. Liu, Y. Yan, H. Zhou, J. Am. Ceram. Soc. 90, 1323 (2007)

    Article  Google Scholar 

  26. S. Dursun, Ultrasonic motor applications of crystallographically textured piezoceramics. Ph.D. Dissertation, Gebze Technical University, Kocaeli, Turkey, 2017

  27. Y. Yan, Y.U. Wang, S. Priya, Appl. Phys. Lett. 100, 192905 (2012)

    Article  Google Scholar 

  28. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113–123 (1959)

    Article  Google Scholar 

  29. Y. Yan, L. Yang, Y. Zhou, K.-H. Cho, J.S. .Heo, S. Priya, J. Appl. Phys. 118, 104101 (2015)

    Article  Google Scholar 

  30. G. Feng, H. Rong-zi, L. Jia-ji, Y. Yong-hong, T. Chang-sheng, Eur. Ceram. Soc. 28, 2063 (2008)

    Article  Google Scholar 

  31. S. Alkoy, S. Dursun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(10), 2044 (2013)

    Article  Google Scholar 

  32. S. Kwon, E.M. Sabolsky, G.L. Messing, J. Am. Ceram. Soc. 84, 648 (2001)

    Article  Google Scholar 

  33. Y. Yoshikawa, K. Tsuzuki, J. Am. Ceram. Soc. 75(9), 2520 (1992)

    Article  Google Scholar 

  34. E.M. Sabolsky, A.R. James, S. Kwon, S. Trolier-McKinstry, G.L. Messing, Appl. Phys. Lett. 78(17), 2551–2553 (2001)

    Article  Google Scholar 

  35. Y. Cheng, J. Wu, Y. Sun, S. Zhang, X. Wang, B. Yang, G.L. Messing, W. Cao, Appl. Phys. Lett. 107, 082902 (2012)

    Article  Google Scholar 

  36. S.M. Gupta, P. Pandit, P. Patro, A.J. Kulkarni, V.K. Wadhawan, Mater. Sci. Eng. B 120, 194 (2005)

    Article  Google Scholar 

  37. J. Ji, B. Fang, X. Zhao, S. Zhang, Q. Du, J. Ding, H. Luo, J. Mater. Sci. Mater. Electron. 29, 4422 (2018)

    Article  Google Scholar 

  38. K. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, J. Alloys Compd. 453, 325 (2008)

    Article  Google Scholar 

  39. B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)

    Article  Google Scholar 

  40. B. Pati, R.N.P. Choudhary, P.R. Das, B.N. Parida, R. Padhee, J. Electr. Mater. 42, 1225 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of Turkish Academy of Sciences (Gebip Programme) and TUBITAK Project #217M086. The authors also would like to thank Prof. Sedat Alkoy and Prof. Huseyin Yilmaz for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Mensur-Alkoy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berksoy-Yavuz, A., Mensur-Alkoy, E. Electrical properties and impedance spectroscopy of crystallographically textured 0.675 [Pb(Mg1/3Nb2/3)O3]-0.325 [PbTiO3] ceramics. J Mater Sci: Mater Electron 29, 13310–13320 (2018). https://doi.org/10.1007/s10854-018-9455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9455-8

Navigation