Skip to main content
Log in

Spark plasma sintering technique: an alternative method to enhance ZT values of Sb doped Cu2SnSe3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sb doped Cu2Sn1−xSbxSe3 (0 ≤ x ≤ 0.04) compounds have been fabricated by spark plasma sintering technique for the investigation of their thermoelelctric properties in the temperature range 10–400 K. The conduction mechanism of electrical resistivity reveals that small polaron hopping model is valid in the high-temperature regime and variable range hopping model in low-temperature regime. The positive values of Seebeck coefficient (S) for Cu2Sn1−xSbxSe3 (0 ≤ x ≤ 0.04) samples in the entire temperature range indicates that the majority charge carriers are holes. The electronic thermal conductivity (κe) was estimated by Wiedmann-Franz law and found that the contribution of κe to the total κ is < 1%, suggesting that the heat conduction for presently studied Cu2Sn1−xSbxSe3 (0 ≤ x ≤ 0.04) samples is mainly associated to the lattice phonons. The highest ZT value for the Cu2Sn0.96Sb0.04Se3 sample was 0.044 at 400 K, which is approximately four times that of the Cu2SnSe3 sample and an order of magnitude larger than the samples prepared by the conventional solid-state method. Also, the thermoelectric compatibility factor of Cu2Sn0.96Sb0.04Se3 was found to be about 1 per V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.E. Bell, Cooling, Heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)

    Article  Google Scholar 

  2. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    Article  Google Scholar 

  3. Z.G. Chen, G. Han, L. Yang, L. Cheng, J. Zou, Nanostructured thermoelectric materials: current research and future challenge. Prog. Nat. Sci. 22, 535 (2012)

    Article  Google Scholar 

  4. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008)

    Article  Google Scholar 

  5. Y. Pei, H. Wang, G.J. Snyder, Band engineering of thermoelectric materials. Adv. Mater. 24, 6125 (2012)

    Article  Google Scholar 

  6. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012)

    Article  Google Scholar 

  7. D.T. Morelli, V. Jovovic, J.P. Heremans, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors. Phys. Rev. Lett. 101, 16 (2008)

    Article  Google Scholar 

  8. O. Yamashita, S. Tomiyoshi, K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit. J. Appl. Phys. 93, 368 (2003)

    Article  Google Scholar 

  9. E.J. Skoug, J.D. Cain, D.T. Morelli, Thermoelectric properties of the Cu2SnSe3–Cu2GeSe3 solid solution. J. Alloys Compd. 506, 18 (2010)

    Article  Google Scholar 

  10. B. Qu, M. Zhang, D. Lei, Y. Zeng, Y. Chen, L. Chen, Q. Li, Y. Wang, T. Wang, Ternary Cu2SnS3 cabbage-like nanostructures: large-scale synthesis and their application in Li-ion batteries with superior reversible capacity. Nanoscale 3, 3646 (2011)

    Article  Google Scholar 

  11. L.K. Samanta, On some properties of I2-IV-VI3 compounds. Phys. Status Solidi A 100, K93 (1987)

    Article  Google Scholar 

  12. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J. Phys. D Appl. Phys. 43, 215403 (2010)

    Article  Google Scholar 

  13. C. Goodman, R. Douglas, New semiconducting compounds of diamond type structure. Physica 20, 1107 (1954)

    Article  Google Scholar 

  14. X.Y. Shi, L. Xi, F. Jing, W. Zhang, L. Chen, Cu–Se bond network and thermoelectric compounds with complex diamondlike structure. Chem. Mater. 22, 6029 (2010)

    Article  Google Scholar 

  15. X. Lu, D. Morelli, J. Cain, Thermoelectric properties of Mn doped Cu2SnSe3. J. Electron. Mater. 41, 1554 (2012)

    Article  Google Scholar 

  16. J. Fan, H. Liu, X. Shi, S. Bai, X. Shi, L. Chen, Investigation of thermoelectric properties of Cu2GaxSn1–xSe3 diamond-like compounds by hot pressing and spark plasma sintering. Acta Mater. 61, 4297 (2013)

    Article  Google Scholar 

  17. K.S. Prasad, B. Ashok Rao, S. Gahtori, A. Bathula, Dhar, The low and high temperature thermoelectric properties of Sb doped Cu2SnSe3. Mater. Res. Bull. 83, 160 (2016)

    Article  Google Scholar 

  18. Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921 (2002)

    Article  Google Scholar 

  19. Z.A. Munir, D.V. Quach, M. Ohyanagi, Electric current activation of sintering: a review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 04210 (2011)

    Article  Google Scholar 

  20. R.S.S. Maki, S. Mitani, T. Mori, Effect of spark plasma sintering (SPS) on the thermoelectric properties of magnesium ferrite. Mater. Renew. Sustain. Energy. 6, 2 (2017)

    Article  Google Scholar 

  21. K.S. Prasad, A. Rao, N.S. Chauhan, R. Bhardwaj, A. Vishwakarma, K. Tyagi, Thermoelectric properties of p-type Sb doped Cu2SnSe3 near room and mid temperature apploications. Appl. Phys. A 124, 98 (2018)

    Article  Google Scholar 

  22. Y.K. Kuo, B. Ramachandran, C.S. Lue, Optimization of thermoelectric performance of SrSi2-based alloys via the modification in band structure and phonon-point-defect scattering. Front. Chem. 2, 106 (2014)

    Article  Google Scholar 

  23. S. Yoon, O.-J. Kwon, S. Ahn, J.-Y. Kim, H. Koo, S.-H. Bae, J.-Y. Cho, J.-S. Kim, C. Park, The effect of grain size and density on the thermoelectric properties of Bi2Te3-PbTe Compounds. J. Electron. Mater. 42, 3390 (2013)

    Article  Google Scholar 

  24. K.S. Prasad, A. Rao, K. Tyagi, N. Singh Chauhan, B. Gahtori, S. Bathula, A. Dhar, Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Physica B: Condens. Matter. 512, 39 (2017)

    Article  Google Scholar 

  25. B.J. Christopher, P.D. Ashok Rao, G.S. Babu, Okram, A systematic study on the effect of electron beam irradiation on structural, electrical, thermo-electric power and magnetic property of LaCoO3. J. Magn. Magn. Mater. 397, 145 (2016)

    Article  Google Scholar 

  26. B.S. Nagaraj, P.D. Ashok Rao, G.S. Babu, Okram, Structural, electrical, magnetic and thermal properties of Gd1-xSrxMnO3 (0.2 ≤ x ≤ 0.5) manganites. Phys. B 479, 10 (2015)

    Article  Google Scholar 

  27. R. Chetty, M. Falmbigl, P. Rogl, P. Heinrich, E. Royanian, E. Bauer, S. Suwas, R.C. Mallik, The effect of multisubstitution on the thermoelectric properties of chalcogenide-based Cu2.1Zn0.9Sn1–xInxSe4 (0 ≤ x ≤ 0.1). Phys. Status Solidi A 210, 2417 (2013)

    Article  Google Scholar 

  28. Y.H. Bhaskar, W.M. Pai, C.L. Wu, C.J. Chang, Liu, Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceram. Int. 42, 1070 (2016)

    Article  Google Scholar 

  29. D. Li, X.Y. Qin, Thermoelectric properties of CuSbSe2 and its doped compounds by Ti and Pb at low temperatures from 5 to 310 K. J. Appl. Phys. 100, 023713 (2006)

    Article  Google Scholar 

  30. M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sust. Energ. Rev. 30, 337 (2014)

    Article  Google Scholar 

  31. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)

    Article  Google Scholar 

  32. P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N. Van Nong, N. Pryds, Towards high efficiency segmented thermoelectric unicouples. Phys. Status Solidi A 211, 9 (2014)

    Article  Google Scholar 

  33. G.J. Snyder, T.S. Ursell, Thermoelectic efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The present work funded by Manipal University (Grant No. MU/HR/E-Chair/2016) and Council of Scientific & Industrial Research (Grant No. 03(1409)/17/EMR-II). The thermal measurements are supported by the Ministry of Science and Technology of Taiwan under Grant No. MOST 106-2112-M-259-002-MY3 (YKK).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashok Rao or Yung-Kang Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, K.S., Rao, A., Bhardwaj, R. et al. Spark plasma sintering technique: an alternative method to enhance ZT values of Sb doped Cu2SnSe3. J Mater Sci: Mater Electron 29, 13200–13208 (2018). https://doi.org/10.1007/s10854-018-9444-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9444-y

Navigation