Advertisement

Studies the effects of bath pH and lead molar concentrations on the structural, optical and electrical properties of lead sulphide thin films prepared by chemical route

Article

Abstract

Lead sulphide (PbS) nanocrystalline thin films were prepared by chemical bath deposition route from two different chemical baths. The first bath (bath-A) was synthesized by varying the volume of ammonia to study the effect of bath pH, while the second bath (bath-B) was complexed by potassium hydroxide and the effect of lead molar concentrations were investigated. The X-ray diffraction analyses confirmed that all deposited thin films from the two baths had face centered cubic crystal structure. The XRD results also verified that the crystalline size increased from 25 to 40 nm when lead molar concentration decreased to 0.1 M. The HRTEM images showed that the grains are grown along different planes which confirmed a typical polycrystalline nature of the deposited PbS thin films from both chemical baths. The elemental analyses were carried out by EDX and confirmed the formation of PbS compound. The optical absorption study showed that the lowest optical band gap of 0.81 eV was estimated from bath-B at 0.1 M lead concentration, whereas, a highest band gap of 1.57 eV was found from bath-A. The transmittance study verified that the transmittance was increased with the wavelength and the maximum transmittance was measured around 24.51% for pH 10.5. The photoluminescence study revealed that the PbS thin film exhibited a broadband emission spectra from 410 to 625 nm regardless of bath pH and lead concentration. The dc-two point probe measurement verified that the electrical properties of the PbS thin films were considerably changed by bath pH and lead molar concentrations. The room temperature resistivity of the thin films found in the order of 104 Ω cm.

Notes

Acknowledgements

The authors are thankfully for Prof. H. C Swart and Prof R. Kroon from Bloemfontein campus to support us for the characterization techniques.

References

  1. 1.
    A.-C. Reádigos, V.M. García, O. Gomezdaza, J. Campos, M.T.S. Nair, P.K. Nair, Semicond. Sci. Technol. 15, 1022 (2000)CrossRefGoogle Scholar
  2. 2.
    S.I. Sadovnikov, A.I. Gusev, J. Alloy. Compd. 573, 65 (2013)CrossRefGoogle Scholar
  3. 3.
    F.D. Martinez-Mancera, J.L. Hernandez-Lopez, Mater. Chem. Phys. 148, 1045 (2014)CrossRefGoogle Scholar
  4. 4.
    S.N. Sahu, K.K. Nanda, PINSA 67, 103 (2001)Google Scholar
  5. 5.
    L.P. Deshmukh, B.M. More, S.G. Holikatti, P.P. Hankare, Bull. Mater. Sci. 17, 455 (1994)CrossRefGoogle Scholar
  6. 6.
    W. Cyrus, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol. 43, 2072 (2009)CrossRefGoogle Scholar
  7. 7.
    M. Mohammadikish, F. Davar, J. Mater. Sci.: Mater. Electron. 26, 2937 (2015)Google Scholar
  8. 8.
    E. Yücel, Y. Yücel, B. Beleli, J. Cryst. Growth 422, 1 (2015)CrossRefGoogle Scholar
  9. 9.
    S. RaviShankar, A.R. Balub, M. Anbarasi, V.S. Nagarethinam, Optik 126, 2550 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Patel, F. Mighri, A. Ajji, D. Tiwari, T. Chaudhuri, Appl. Phys. A Mater. Sci. Process. 117, 1791 (2014)CrossRefGoogle Scholar
  11. 11.
    S. Seghaier, N. Kamoun, R. Brini, A.B. Amarac, Mater. Chem. Phys. 97, 71 (2006)CrossRefGoogle Scholar
  12. 12.
    N. Choudhury, B.K. Sarma, Thin Solid Films 519, 2132 (2011)CrossRefGoogle Scholar
  13. 13.
    F.G. Hone, F.K. Ampong, T. Abza, I. Nkrumah, M. Paal, R.K. Nkum, F. Boakye, Mater. Lett. 155 58 (2015)CrossRefGoogle Scholar
  14. 14.
    F. Göde, E. Güneri, F.M. Emen, V. Emir Kafadar, S. Ünlü, J. Lumin. 147, 41 (2014)CrossRefGoogle Scholar
  15. 15.
    L. Rajen Singh, S. Bobby Singh, R.K. London, H.B. Sharma, A. Rahman, AIP Conf. Proc. 146, 353 (2012)CrossRefGoogle Scholar
  16. 16.
    A. Hussain, A. Begum, A. Rahman, Indian J. Phys. 86, 697 (2012)CrossRefGoogle Scholar
  17. 17.
    N. Choudhury, B.K. Sarma, Bull. Mater. Sci. 32, 43 (2009)CrossRefGoogle Scholar
  18. 18.
    F.G. Hone, F.K. Ampong, Mater. Chem. Phys. 183, 320 (2016)CrossRefGoogle Scholar
  19. 19.
    P.P. Hankarea, S.D. Delekara, M.R. Asabea, P.A. Chatea, V.M. Bhusea, A.S. Khomanea, K.M. Garadkarb, B.D. Sarwade, J. Phys. Chem. Solids 67, 2506 (2006)CrossRefGoogle Scholar
  20. 20.
    S. Xigui, K. Gao, X. Pang, H. Yang, ACS Appl. Mater. Interfaces 8, 625–633 (2016)CrossRefGoogle Scholar
  21. 21.
    K.C. Preetha, K.V. Murali, A.J. Ragina, K. Deepa, T.L. Remadevi, Curr. Appl. Phys. 12, 53 (2012)CrossRefGoogle Scholar
  22. 22.
    B. Rajashree, A.R. Balu, V.S. Nagarethinam, Int. J. Chem. Tech. Res. 6, 347 (2014)Google Scholar
  23. 23.
    A.N. Chattarki, S.S. Kamble, L.P. Deshmukh, Mater. Lett. 67, 39 (2012)CrossRefGoogle Scholar
  24. 24.
    G.K. Williamson, R.E. Smallman, Phil. Mag. 1, 34 (1956)CrossRefGoogle Scholar
  25. 25.
    M.R.A. Bhuiyan, M.A.A. Azad, S.M.F. Hasan, Indian J. Pure Appl. Phys. 49, 180 (2011)Google Scholar
  26. 26.
    T. Tohidi, K. Jamshidi-Ghaleh, Appl. Phys. A 118, 1247 (2015)CrossRefGoogle Scholar
  27. 27.
    M.P. Deshpande, N. Garg, S.V. Bhatt, P. Sakariya, S.H. Chaki, Mater. Sci. Semicond. Process. 16, 915 (2013)CrossRefGoogle Scholar
  28. 28.
    H. Sattarian, T. Tohidi, S. Rahmatallahpur, Mater. Sci. 34, 540 (2016)Google Scholar
  29. 29.
    G. Korotcenkov, A. Cornet, E. Rossinyol, J. Arbiol, V. Brinzari, Y. Blinov, Thin Solid Films 471, 310 (2005)CrossRefGoogle Scholar
  30. 30.
    S. Thangavel, S. Ganesan, S. Chandramohan, P. Sudhagar, Y.S. Kang, C.H. Hong, J. Alloy. Compd. 495, 234 (2010)CrossRefGoogle Scholar
  31. 31.
    N.B. Kotadiya, A.J. Kothari, D. Tiwari, T.K. Chaudhuri, Appl. Phys. A 108, 819 (2012)CrossRefGoogle Scholar
  32. 32.
    D.H. Yeon, S.M. Lee, Y.H. Jo, J. Moon, Y.S. Cho, J. Mater. Chem. A 2, 20112 (2014)CrossRefGoogle Scholar
  33. 33.
    O.P. Moreno, R.G. Pérez, R.P. Merino, M.C. Portillo, G.H. Téllez, E.R. Rosas, Thin Solid Films 616, 800 (2016)CrossRefGoogle Scholar
  34. 34.
    D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshresth, J. Alloy. Compd. 484, 463 (2009)CrossRefGoogle Scholar
  35. 35.
    M.M. Abbas, A.A. Shehab, N.A. Hassan, A.K. Al-Samuraee, Thin Solid Films 519, 4917 (2011)CrossRefGoogle Scholar
  36. 36.
    S. Kaci, A. Keffous, L. Guerbous, M. Trari, Thin Solid Films 520, 79 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Ye, Y. Ye, Y. Ni, Z. Wu, J. Cryst. Growth 284, 172 (2005)CrossRefGoogle Scholar
  38. 38.
    S.B. Pawar, J.S. Shaikh, R.S. Devan, Y.R. Ma, D. Haranath, P.N. Bhosale, P.S. Patil, Appl. Surf. Sci. 258, 1869 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Kaci, A. Keffous, M. Trari, O. Fellahi, H. Menari, A. Manseri, L. Guerbous, J. Lumin. 130, 1849 (2010)CrossRefGoogle Scholar
  40. 40.
    C. Rajashree, A.R. Balu, V.S. Nagarethinam, J. Mater. Sci.: Mater. Electron. 27, 5070 (2016)Google Scholar
  41. 41.
    T. Tohidi, K. Jamshidi-Ghaleh, Phil. Mag. 94, 3368 (2014)CrossRefGoogle Scholar
  42. 42.
    N. Akin, Y. Ozen, H.I. Efkere, M. Cakmaka, S. Ozcelik, Surf. Interface Anal. 47, 93 (2014)CrossRefGoogle Scholar
  43. 43.
    X. Wang, F. Zhao, P. Xie, S. Deng, N. Xu, H. Wang, Chem. Phys. Lett. 423, 361 (2006)CrossRefGoogle Scholar
  44. 44.
    S. Hassanien, A.A. Akl, Superlattices Microstruct. 89, 153 (2016)CrossRefGoogle Scholar
  45. 45.
    J.Y.W. Seto, J. Appl. Phys. 46, 5247 (1976)CrossRefGoogle Scholar
  46. 46.
    K.S. Kumar, A.G. Manohari, C. Lou, T. Mahalingam, S. Dhanapandian, Vacuum 128, 226 (2016)CrossRefGoogle Scholar
  47. 47.
    F.G. Hone, F.B. Dejene, Mater. Res. Express 5, 026409 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics (Qwa Qwa Campus)University of the Free StatePhuthaditjhabaSouth Africa
  2. 2.Department of PhysicsHawassa UniversityHawassaEthiopia

Personalised recommendations