Advertisement

Improved dielectric properties of PVDF nanocomposites: a comparative study of noncovalent and covalent functionalization of MWCNTs

Article
  • 1 Downloads

Abstract

Polyvinylidene fluoride (PVDF) based nanocomposites with γ-oxo-pyrenebutyric acid-noncovalent modified multiwalled carbon nanotubes (denoted as PACNTs) and stearic acid-covalent modified MWCNTs (SACNTs) as nanofillers, were fabricated using solution-blending method and their dielectric properties were carefully investigated. γ-Oxo-pyrenebutyric acid (PA) or stearic acid (SA) can improve the dispersion of MWCNTs in PVDF matrix because of strong physical π–π interaction and the surface of MWCNTs grafted with SA respectively. The values of percolation threshold for PVDF/PACNTs and PVDF/SACNTs were determined to be 5.7 and 6.3 vol%, respectively. Higher dielectric permittivity and lower loss tangent of PVDF/PACNTs originates from remarkable interfacial polarization because PA have more contact area with MWCNTs and can reduce leakage current compared with SA.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51603060).

References

  1. 1.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334–336 (2006)CrossRefGoogle Scholar
  2. 2.
    Z.M. Dang, M.S. Zheng, P.H. Hu, J.W. Zha, J. Adv. Phys. 4, 302–313 (2015)CrossRefGoogle Scholar
  3. 3.
    Y.L. Su, Y.Q. Gu, S.N. Feng, J. Mater. Sci. Mater. Electron. 29, 2416–2420 (2018)CrossRefGoogle Scholar
  4. 4.
    P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683–706 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Liu, X. Yang, J. Sun, F. Ma, Mater. Lett. 212, 283–286 (2018)CrossRefGoogle Scholar
  6. 6.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  7. 7.
    S. Iijima, Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  8. 8.
    J.N. Coleman, U. Khan, Y.K. Gunko, Adv. Mater. 18, 689–706 (2006)CrossRefGoogle Scholar
  9. 9.
    C. Yang, Y.H. Lin, C.W. Nan, Carbon 47, 1096–1101 (2009)CrossRefGoogle Scholar
  10. 10.
    X.R. Ye, Y. Lin, C. Wang, C.M. Wai, Adv. Mater. 15, 316–319 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Salvetat, A.J. Kulik, J. Bonard, G.A.D. Briggs, T. Stöckli, K. Méténier, Adv. Mater. 11, 161–165 (1999)CrossRefGoogle Scholar
  12. 12.
    J.W. Xu, C.P. Wong, Appl. Phys. Lett. 87, 082907 (2005)CrossRefGoogle Scholar
  13. 13.
    C. Zhang, H. Chen, X. Zhang, Q. Wang, Mater. Lett. 197, 111–114 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Fiedeler, F.H. Gojny, Compos. Sci. Technol. 66, 3115–3125 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106, 1105–1136 (2006)CrossRefGoogle Scholar
  16. 16.
    X. Wang, Q. Jiang, W. Xu, W. Cai, Y. Inoue, Y. Zhu, Carbon 53, 145–152 (2013)CrossRefGoogle Scholar
  17. 17.
    X. He, F. Zhang, R. Wang, W. Liu, Carbon 45, 2559–2563 (2007)CrossRefGoogle Scholar
  18. 18.
    Q. Li, Q.Z. Xue, L.Z. Hao, X.L. Gao, Q.B. Zheng, Compos. Sci. Technol. 68, 2290–2296 (2008)CrossRefGoogle Scholar
  19. 19.
    Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.Q. Lei, Adv. Mater. 19, 852–857 (2007)CrossRefGoogle Scholar
  20. 20.
    E.Y. Choi, C.R. Sang, C.K. Kim, Carbon 72, 160–168 (2014)CrossRefGoogle Scholar
  21. 21.
    X. Lou, R. Daussin, S. Cuenot, A. Duwez, C. Pagnoulle, C. Detrembleur, Chem. Mater. 16, 4005–4011 (2004)CrossRefGoogle Scholar
  22. 22.
    T.J. Simmons, J. Bult, D.P. Hashim, R.J. Linhardt, M. Ajayan, ACS Nano 3, 865–870 (2009)CrossRefGoogle Scholar
  23. 23.
    P.M. Botta, J. Mira, A. Fondado, J. Rivas, Mater. Lett. 61, 2990–2992 (2007)CrossRefGoogle Scholar
  24. 24.
    K. Ahmad, W. Pan, S.L. Shi, Appl. Phys. Lett. 89, 133122 (2006)CrossRefGoogle Scholar
  25. 25.
    Y.J. Kim, T.S. Shin, H.D. Choi, J.H. Kwon, Y.C. Chung, H.G. Yoon, Carbon 43, 23–30 (2005)CrossRefGoogle Scholar
  26. 26.
    Y.J. Li, M. Xu, J.Q. Feng, Z.M. Dang, Appl. Phys. Lett. 89, 072902 (2006)CrossRefGoogle Scholar
  27. 27.
    M. Li, X.Y. Huang, C. Wu, H.P. Xu, P.K. Jiang, T. Tanakac, J. Mater. Chem. 22, 23477–23484 (2012)CrossRefGoogle Scholar
  28. 28.
    F. He, S.T. Lau, H.L. Chan, T. Fan, Adv. Mater. 21, 710–715 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Wang, P.K. Ang, Z.Q. Wang, A.L.L. Tang, J.T.L. Thong, K.P. Loh, Nano Lett. 10, 92–98 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Functional Materials and DevicesHefei University of TechnologyHefeiChina

Personalised recommendations