Skip to main content

Advertisement

Log in

Inkjet printed flexible electronics on paper substrate with reduced graphene oxide/carbon black ink

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A reduced graphene oxide (RGO) and carbon black (CB) ink was fabricated with a mixture of ethanol/ethanediol/propanetriol/deionized water as a solvent, and sodium carboxymethyl cellulose (CMC) as a binding and dispersant. The RGO was obtained by reducing graphene oxide using ascorbic acid as a green reductant at a mild temperature of 95 °C. The flexible paper-based electronic circuits were fabricated by inkjet printing the obtained ink on glossy photo paper substrate with an Epson piezoelectric printer. When the loads of RGO, CB, ethanol, ethylene glycol, glycerol, CMC and deionized water were 96 mg, 504 mg, 12 ml, 30 ml, 30 ml, 480 mg and 51 ml, the electrical conductivity, average particle size and viscosity of the ink were 122.4 µs/cm, 1.966 µm and 22.5 mPa s, respectively; and the ink exhibited good acid resistance. A continuous, dense and uniform conductive network was achieved when the printing pass number was 4 for a single circuit. The resistance at both ends of the aforementioned printed circuit (10 × 2 × 0.03338, length × width × thickness, mm) was 0.1 MΩ with a resistivity of 0.661 Ωm for the ink layer, and the circuits showed moderate uniformity, adhesion and mechanical flexibility. In the light-emitting diode operation, the three-dimensional conductive circuits also presented good electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Md. Sajibul Alam Bhuyan, Md. Nizam Uddin, … Sayed Shafayat Hossain

References

  1. A. Capasso, A.E.D.R. Castillo et al., Solid State Commun. 224, 53–63 (2015)

    Article  Google Scholar 

  2. A.C. Siegel, S.T. Phillips, M.D. Dickey et al., Adv. Funct. Mater. 20, 28–35 (2010)

    Article  Google Scholar 

  3. K. Kim, S.I. Ahn, K.C. Choi, Carbon 66, 172–177 (2014)

    Article  Google Scholar 

  4. S. Kim, B. Cook, T. Le et al., IET Microware Antennas Propag. 7, 858–868 (2013)

    Article  Google Scholar 

  5. M. Vaseem, K.M. Lee, A. Hong et al., ACS Appl. Mater. Interfaces 4, 3300–3307 (2012)

    Article  Google Scholar 

  6. S. Hurch, H. Nolan, T. Hallam et al., Carbon 71, 332–337 (2014)

    Article  Google Scholar 

  7. Y. Gao, W. Shi, W. Wang et al., Ind. Eng. Chem. Res. 53, 16777–16784 (2014)

    Article  Google Scholar 

  8. T. Takenobu, N. Miura, S.Y. Lu et al., Appl. Phys. Express 2, 0255005 (2009)

    Article  Google Scholar 

  9. G. Cummins, M.P.Y. Desmulliez, Circuit World 3, 193–213 (2012)

    Article  Google Scholar 

  10. R. Giardi, S. Porro, A. Chiolerio et al., J. Mater. Sci. 48, 1249–1255 (2013)

    Article  Google Scholar 

  11. E.S. Snow, J.P. Novak, D. Park et al., Appl. Phys. Lett. 82, 2145 (2003)

    Article  Google Scholar 

  12. A. Kamyshny, J. Steinke, S. Magdassi, Open Appl. Phys. J. 4, 19–36 (2011)

    Article  Google Scholar 

  13. M. Ha, Y. Xia, A.A. Green, et al., ACS Nano 4, 4388–4395 (2010)

    Article  Google Scholar 

  14. M. Ha, J.T. Seo, P.L. Prabhumirashi et al., Nono Lett. 13, 954–960 (2013)

    Article  Google Scholar 

  15. B. Kim, S. Jang, P.L. Prabhumirashi et al., Appl. Phys. Lett. 103, 082119 (2013)

    Article  Google Scholar 

  16. V. Singh, D. Joung, L. Zhai, et al., Prog. Mater Sci. 56, 1178–1271 (2011)

    Article  Google Scholar 

  17. P. Avouris, Z. Chen, Nat. Nanotechnol. 2, 605–615 (2007)

    Article  Google Scholar 

  18. E.B. Secor, M.C. Hersam, J. Phys. Chem. Lett. 6, 620 (2015)

    Article  Google Scholar 

  19. M. Romagnoli, M.L. Gualtieri, M. Cannio et al., Mater. Chem. Phys. 182, 263–271 (2016)

    Article  Google Scholar 

  20. J. Li, F. Ye, S. Vaziri et al., Adv. Mater. 25, 3985–3992 (2013)

    Article  Google Scholar 

  21. A. Lerf, H. He, M. Forster et al., J. Phys. Chem. B 102, 4477 (1988)

    Article  Google Scholar 

  22. D. Kong, L.T. Le, Y. Li et al., Langmuir 28, 13467–13472 (2012)

    Article  Google Scholar 

  23. M.J. Allen, V.C. Tung, R.B. Kaner, Chem. Rev. 110, 132–145 (2010)

    Article  Google Scholar 

  24. A.A. Green, M.C. Hersam, J. Phys. Chem. Lett. 1, 544–549 (2010)

    Article  Google Scholar 

  25. F. Torrisi, T. Hasan, W. Wu et al., ACS Nano 6, 2992–3006 (2012)

    Article  Google Scholar 

  26. D. Finn, M. Lotya, G. Cunningham et al., J. Mater. Chem. C 2, 925–932 (2014)

    Article  Google Scholar 

  27. E.B. Secor, P.L. Prabhumirashi et al., J. Phys. Chem. Lett. 4, 1347–1351 (2013)

    Article  Google Scholar 

  28. S. Shukla, K. Domican, K. Karan et al., Electrochim. Acta 156, 289–300 (2015)

    Article  Google Scholar 

  29. C. Svanberg, T. Pham, M.A. Malik et al., US Patent EP2374842 (2013)

  30. W.S. Hummers Jr, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  31. Y. Xu, H. Bai, G. Lu et al., J. Am. Chem. Soc. 130, 5856–5857 (2008)

    Article  Google Scholar 

  32. D. He, L. Shen, X. Zhang et al., AIChE J. 60, 2757–2764 (2014)

    Article  Google Scholar 

  33. J.W. Han, B. Kim, J. Li et al., Mater. Res. Bull. 50, 249–253 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by “A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)” and National Natural Science Foundation of China (Grant No. 31370567).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, A., Chen, Y., Wang, X. et al. Inkjet printed flexible electronics on paper substrate with reduced graphene oxide/carbon black ink. J Mater Sci: Mater Electron 29, 13032–13042 (2018). https://doi.org/10.1007/s10854-018-9425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9425-1

Navigation