Skip to main content

Advertisement

Log in

Fabrication of TiOx–Si photoanode and its energetic photoelectrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pristine Si is oxidized to insulative SiO2 when it comes in contact with air and water. Covering it with a protection layer inhibits passivation of Si and significantly improves its photoelectrochemical performance. In this study, TiOx with gradient change of oxygen stoichiometry ratio (TiOx) was designed as a protection layer and fabricated via a chemical vapour deposition process in Ar flow under 400 °C for 1 min. The anaerobic atmosphere and short heating duration synergistically produced the ratio of O and Ti lower than two in the prepared film. XPS analysis suggested the existance of TiO2 only at the surface of TiOx film and Ti3+ and Ti2+ appeared successively with the increase of distance to the surface. The first advantage of lower-valence-state Ti and oxygen deficiency was to inhibit the oxidation of Si and to reduce electric resistance of the interface and the protection layer. The second advantage was to create a defect energy level under the conduction band of TiO2 which provided the possibility for holes in the valence band of Si to be transferred to this defect level. This tunnel like transfer enhanced the photogenerated charge separation and redox ability of TiOx–Si which brought a 3.25 folds enhancements in photocurrent density compared to that of stoichiometric TiO2–Si at 0 V (SCE) under simulated sunlight. This study highly motivates further research on transparent and conductive protection layer of Si photoelectrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Chem. Rev. 19, 114 (2014)

    Google Scholar 

  2. H. Yu, X. Li, X. Quan, S. Chen, Y. Zhang, Environ. Sci. Technol. 20, 43 (2009)

    Google Scholar 

  3. H. Yu, S. Chen, X. Quan, H. Zhao, Y. Zhang, Appl. Catal. B 1–2, 90 (2009)

    Google Scholar 

  4. Y.W. Chen, J.D. Prange, S. Duhnen, Y. Park, M. Gunji, C.E. Chidsey, McIntyre, PC Nat. Mater. 7, 10 (2011)

    Google Scholar 

  5. S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, N.S. Lewis, Science 6187, 344 (2014)

    Google Scholar 

  6. M.R. Shaner, S. Hu, K. Sun, N.S. Lewis, Energy Environ. Sci. 1, 8 (2015)

    Google Scholar 

  7. W. Fang, M. Xing, J. Zhang, J. Photochem. Photobiol. C 21, 32 (2017)

    Google Scholar 

  8. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C.L. Bianchi, R. Psaro, V. Dal Santo, J. Am. Chem. Soc. 18, 134 (2012)

    Google Scholar 

  9. Y. Zhang, Z. Xing, X. Liu, Z. Li, X. Wu, J. Jiang, M. Li, Q. Zhu, W. Zhou, ACS Appl. Mater. Interfaces 40, 8 (2016)

    Google Scholar 

  10. X. Zhou, N. Liu, P. Schmuki, ACS Catal. 5, 7 (2017)

    Google Scholar 

  11. A.Y. Stakheev, E.S. Shpiro, J. Apijok, J. Phys. Chem. 21, 97 (1993)

    Google Scholar 

  12. A. Brevet, P.M. Peterlé, L. Imhoff, M.C. Marco de Lucas, S. Bourgeois, J. Cryst. Growth 1–2, 275 (2005)

    Google Scholar 

  13. Y.P. Fang, A.W. Xu, W.F. Dong, Small 10, 1 (2005)

    Google Scholar 

  14. C. Di Valentin, G. Pacchioni, A. Selloni, J. Phys. Chem. C 48, 113 (2009)

    Google Scholar 

  15. K. Suriye, P. Praserthdam, B. Jongsomjit, Appl. Surf. Sci. 8, 253 (2007)

    Google Scholar 

  16. Q. Zhu, Y. Peng, L. Lin, C.-M. Fan, G.-Q. Gao, R.-X. Wang, A.-W. Xu, J. Mater. Chem. A 12, 2 (2014)

    Google Scholar 

  17. J. Wang, P. Zhang, X. Li, J. Zhu, H. Li, Appl. Catal. B 134135, 198–204 (2013)

  18. Y. Zhu, M.W. Shah, C. Wang, Appl. Catal. B 526, 203 (2017)

    Google Scholar 

  19. Y. Cao, Z. Xing, Z. Li, X. Wu, M. Hu, X. Yan, Q. Zhu, S. Yang, W. Zhou, J. Hazard. Mater. 181, 343 (2018)

    Google Scholar 

  20. H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. (Weinh) 11, 3 (2016)

    Google Scholar 

  21. X. Yao, L. Chen, M. Liu, D. Feng, C. Wang, F. Lu, W. Wang, X. Wang, Y. Cheng, H. Liu, H. Chen, W. Wang, Appl. Catal. B 70, 221 (2018)

    Google Scholar 

  22. S. Chen, Y. Hu, L. Ji, X. Jiang, X. Fu, Appl. Surf. Sci. 357, 292 (2014)

    Google Scholar 

  23. J. Halme, K. Miettunen, P. Lund, J. Phys. Chem. C 51, 112 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Nature Science Foundation of China (NO. 21590813).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Wu, S., Yu, H. et al. Fabrication of TiOx–Si photoanode and its energetic photoelectrochemical performance. J Mater Sci: Mater Electron 29, 12700–12706 (2018). https://doi.org/10.1007/s10854-018-9387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9387-3

Navigation