Skip to main content
Log in

Optimization of TiO2/MWCNT composites for efficient dye sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper deals with the effects of introducing multiwall carbon nanotubes (MWCNTs) into photoanodes of dye sensitized solar cells (DSSCs). Mesoporous titanium dioxide (TiO2) nanoparticles were synthesized using sol–gel technique. TiO2/MWCNT composites were prepared by adding functionalized MWCNTs to TiO2 nanoparticles using two different surfactants (α-terpineol and Triton X-100). Nanoparticles and composites were characterized using Dynamic Light Scattering spectrophotometer, Raman spectrometer, X-ray diffractometer, field emission scanning electron microscope, Brunauer–Emmett–Teller surface area analyzer and UV–Vis spectrophotometer. FESEM depicted that particles were spherical in shape and their size decreased due to addition of MWCNTs. This was attributed to the decrease in the crystallite size which in turn confirmed by XRD. UV–Vis absorption spectra showed the better absorbance for the visible range of light, as the content of MWCNT is increased. From the Tauc plot optical band gap was calculated and noted that it declined gradually with the content of MWCNTs. BET surface area increased drastically which was attributed to the formation of more number of pores in the nanocomposites as visualized from FESEM. UV–Vis spectra of dye desorbed from the photoanode revealed that the dye adsorption increased as a function of MWCNT wt%. I–V studies were carried out under the illumination of 100 mW/cm2 simulated sunlight. Photoanodes prepared by both the methods showed better performance compared to pristine TiO2 photoanode, because of high conducting path and high surface area provided by MWCNTs. Photoanodes with 0.19 wt% MWCNTs in them were able to achieve maximum efficiency of 3.54 and 3.86% for method A and B respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Karuppuchamy, Y. Andou, T. Endo, Appl. Nanosci. 3, 291–293 (2013)

    Article  Google Scholar 

  2. M. Gratzel, J. Photochem. Photobiol. C 4, 145–153 (2003)

    Article  Google Scholar 

  3. D. Kuang, J. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. Zakeeruddin, M. Gratzel, ACS Nano 2, 1113–1116 (2008)

    Article  Google Scholar 

  4. H. Setyawati, H. Darmokoesoemo, F. Rochman, A.J. Permana, Mater. Renew. Sustain. Energy (2017). https://doi.org/10.1007/s40243-017-0101-9

    Google Scholar 

  5. H.J. Snaith, Adv. Funct. Mater. 20, 13–19 (2010)

    Article  Google Scholar 

  6. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Graetzel, M.K. Nazeeruddin, M. Graetzel, Thin Solid Films 516, 4613–4619 (2008)

    Article  Google Scholar 

  7. D.Y. Rahman, M. Rokhmat, E. Yuliza, E. Sustini, M. Abdullah, Int. J. Energy Environ. Eng. 7, 289–296 (2016)

    Article  Google Scholar 

  8. K. Yu, J. Chen, Nanoscale Res. Lett. 4(1), 1–10 (2009). https://doi.org/10.1007/s11671-008-9200-y

    Article  Google Scholar 

  9. M. Burghard, Surf. Sci. Rep. 58, 1–109 (2005)

    Google Scholar 

  10. M.A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao, M.E. Itkis, R.C. Haddon, Chem. Phys. Lett. 347, 8–12 (2001)

    Article  Google Scholar 

  11. J. Khamwannah, S.Y. Noh, C. Frandsen, Y. Zhang, H. Kim, J. Renew. Sustain. Energy 4, 023116–023124 (2012)

    Article  Google Scholar 

  12. G.H. Guai, Y. Li, C.M. Ng, C.M. Li, M.B. Chan-Park, Chem. Phys. Chem. 13, 2566–2572 (2012)

    Article  Google Scholar 

  13. T. Sawatsuk, A. Chindaduang, C.S. Kung, S. Pratontep, G. Tumcharern, Diam. Relat. Mater. 18, 524–527 (2009)

    Article  Google Scholar 

  14. L. Meng, C. Fu, Q. Lu, Prog. Nat. Sci. 19, 801–810 (2009)

    Article  Google Scholar 

  15. S. Zhang, H. Niu, Y. Lan, C. Cheng, J. Xu, X. Wang, J. Phys. Chem. C 115, 22025–22034 (2011)

    Article  Google Scholar 

  16. C. Cheng, J. Wu, Y. Xiao, Y. Chen, H. Yu, Z. Tang, J. Lin, M. Huang, Front. Optoelectron. 5, 224–230 (2012)

    Article  Google Scholar 

  17. K.M. Lee, C.W. Hu, H.W. Chen, K.C. Ho, Sol. Energy Mater. Sol. Cells 92, 1628–1633 (2008)

    Article  Google Scholar 

  18. J. Yu, J. Fan, B. Cheng, J. Power Sources 196, 7891–7898 (2011)

    Article  Google Scholar 

  19. C.Y. Yen, Y.F. Lin, S.H. Liao, C.C. Weng, C.C. Huang, Y.H. Hsiao, C.C. Ma, M.C. Chang, H. Shao, M.C. Tsai, C.K. Hsieh, C.H. Tsai, F.B. Weng, Nanotechnology 19, 375305–375313 (2008)

    Article  Google Scholar 

  20. W. Zhong-Sheng, K. Hiroshi, K. Takeo, A. Hironori, Coord. Chem. Rev. 248, 1381–1389 (2004)

    Article  Google Scholar 

  21. W. Mathana, C. Siriluk, C. Surawut, J. Nanomater. (2015). https://doi.org/10.1155/2015/689306

    Google Scholar 

  22. M.M.H. Farooqi, R.K. Srivastava, Mater. Sci. Semicond. Process. 20, 61–67 (2014)

    Article  Google Scholar 

  23. G. Hu, X. Meng, X. Feng, Y. Ding, S. Zhang, M. Yang, J. Mater, Sci. 42, 7162–7170 (2007). https://doi.org/10.1007/s10853-007-1609-7

    Article  Google Scholar 

  24. U.J. Kim, C.A. Furtado, X.M. Liu, G.G. Chen, P.C. Eklund, J. Am. Chem. Soc. 127, 15437–15445 (2005)

    Article  Google Scholar 

  25. S. Osswald, E. Flahaut, Y. Gogotsi, Chem. Mater. 18, 1525–1533 (2006)

    Article  Google Scholar 

  26. G.J. Meyer, Inorg. Chem. 44, 6852–6864 (2005)

    Article  Google Scholar 

  27. S.W. Lee, W.M. Sigmund, Chem. Commun. 6, 780–781 (2003)

    Article  Google Scholar 

  28. Y. Yu, J.C. Yu, J.G. Yu, Y.C. Kwok, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge, P.K. Wong, Appl. Catal. A 289, 186–196 (2005)

    Article  Google Scholar 

  29. Y. Yu, L.L. Ma, W.Y. Huang, F. Du, J.C. Yu, J.G. Yu, J.B. Wang, P.K. Wong, Carbon 43, 670–673 (2005)

    Article  Google Scholar 

  30. A. Jitianu, T. Cacciaguerra, R. Benoit, S. Delpeux, F. Beguin, Carbon 42, 1147–1151 (2004)

    Article  Google Scholar 

  31. A.Y. Yen, Y.F. Lin, C.H. Hung, Y.H. Tseng, C.C. Ma, M.C. Chang, H. Shao, Nanotechnology 19, 045604–045614 (2008)

    Article  Google Scholar 

  32. X.H. Li, J.L. Niu, J. Zhang, H. Li, Z. Liu, J. Phys. Chem. B 107, 2453–2458 (2003)

    Article  Google Scholar 

  33. J.G. Yu, T.T. Ma, S.W. Liu, Phys. Chem. Chem. Phys. 13, 3491–3501 (2011)

    Article  Google Scholar 

  34. J.J. Fan, S.W. Liu, J.G. Yu, J. Mater. Chem. 22, 17027–17036 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kiran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, S., Naveen Kumar, S.K., Yogananda, K.C. et al. Optimization of TiO2/MWCNT composites for efficient dye sensitized solar cells. J Mater Sci: Mater Electron 29, 12681–12689 (2018). https://doi.org/10.1007/s10854-018-9385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9385-5

Navigation