Skip to main content
Log in

Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuInGeSe4 thin films of various thicknesses were prepared on a glass substrate by thermal evaporation followed by selenization at 700 K. Energy dispersive X-ray analysis shows that the CuInGeSe4 thin films are near stoichiometric. The X-ray diffraction patterns indicate that the as-deposited CuInGeSe4 thin films are amorphous, while the CuInGeSe4 thin films annealed at 700 K are polycrystalline with the chalcopyrite phase. The structure of the films was further investigated by transmission electron microscopy and diffraction, with the results verifying the X-ray diffraction data. High-resolution scanning electron microscopy images show well-defined grains that are nearly similar in size. The surface roughness increases with film thickness, as confirmed by atomic force microscopy. The optical transmission and reflection spectra of the CuInGeSe4 thin films were recorded over the wavelength range of 400–2500 nm. The variation of the optical parameters of the CuInGeSe4 thin films, such as the refractive index n and the optical band gap Eg, as a function of the film thickness was determined. The value of Eg decreases with increasing film thickness. For the studied films, n were estimated from the Swanoepl’s method and were found to increase with increasing film thickness as well as follow the two-term Cauchy dispersion relation. A heterojunction with the configuration Al/n–Si/p–CuInGeSe4/Au was fabricated. The built-in voltage and the carrier concentration of the heterojunction was determined from the capacitance–voltage measurements at 1 MHz and were found to be 0.61 V and 3.72 × 1017 cm−3, respectively. Under 1000 W/m2 solar simulator illumination, the heterojunction achieved a conversion efficiency of 2.83%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.C. Lokhande, A.A. Yadav, H. Lee, S.J. Patil, M. He, V.C. Lokhande, C.D. Lokhande, J.H. Kim Room temperature liquefied petroleum gas sensing using Cu2SnS3/CdS heterojunction. J. Alloys Compd. 709, 92–103 (2017)

    Article  Google Scholar 

  2. S.J. Patil, A.C. Lokhande, A.A. Yadav, C.D. Lokhande, Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. J. Mater. Sci. 27, 7505–7508 (2016)

    Google Scholar 

  3. W. Lia, X. Yana, W.-L. Xua, J. Longa, AG. Aberlea, S. Venkataraja, Efficiency improvement of CIGS solar cells by a modified rear contact. Sol. Energy 157, 486–495 (2017)

    Article  Google Scholar 

  4. K.F. Tai, R. Kamada, T. Yagioka, T. Kato, H. Sugimoto, From 20.9 to 22.3% Cu (In,Ga)(S,Se)2 solar cell: reduced recombination rate at the heterojunction and the depletion region due to K-treatment. Jpn. J. Appl. Phys. 56(8S2), 08MC03 (2017)

    Article  Google Scholar 

  5. A. Talaat, E.M. Hameed, W. Cao, I.K. Abdelrazek, B.A. El Zawawi, E. Mansour, Effect of substrate temperature on properties of Cu(In, Ga, Al)Se2 films grown by magnetron sputtering. J. Mater. Sci. 27, 3209–3216 (2016)

    Google Scholar 

  6. K. Bouabid, A. Ihlal, A. Manar, A. Outzourhit, Effect of deposition and annealing parameters on the properties of electrodeposited CuIn1–xGaxSe2 thin films. Thin Solid Films 488, 62–67 (2005)

    Article  Google Scholar 

  7. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 37), Prog. Photovolt. Res. Appl. 19, 84 (2011)

    Article  Google Scholar 

  8. W. Chen, W. Cao, T.A. Hameed, S. Marsillac, E. Hani, H.E. Elsayed-Ali, Properties of Cu(In,Ga,Al)Se2 thin films fabricated by pulsed laser deposition. J. Mater. Sci. 26, 1743–1747 (2015)

    Google Scholar 

  9. A. Ihlal, K. Bouabid, D. Soubane, M. Nya, O. Ait-Taleb-Ali, Y. Amira, A. Outzourhit, G. Nouet, Comparative study of sputtered and electrodeposited CI(S,Se) and CIGSe thin films. Thin Solid Films 515, 5852–5856 (2007)

    Article  Google Scholar 

  10. A. Mansour, I.K.E.L. Zawawi, H.E. Elsayed-Ali, T.A. Hameed, Preparation and characterization of optical and electrical properties of copper selenide sulfide polycrystalline thin films., J. Alloy. Compd. 740, 1125–1132 (2017)

  11. T. Hiroaki Matsushita, K. Ochiai, A. Mikajiri, Katsui, Thermal analysis of CuInGeSe4 quaternery compound for crystal growth solution method. Jpn. J. Appl. Phys. 39, 62 (2000)

    Article  Google Scholar 

  12. O.H. Hughes, J.C. Wool, Quaternary adamanite sekenids and yellirides of the form 1 III IV VI4. Solid State Commun. 35, 573–575 (1980)

    Article  Google Scholar 

  13. H. Matsushita, T. Maeda, A. Katsui, T. Takizawa, Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu-III-IV-VI4 and Cu2-II-IV-VI4(II = Zn,Cd;III = Ga. J.Cryst.Growth 208, 416 (2000)

    Article  Google Scholar 

  14. T. Hiroaki Matsushita, K. Ochiai, A. Mikajiri, Preparation of CuInGeSe4 thin films by selenization method using the Cu–In–Ge evaporated layer precursors. J. Phys. Chem. Solids 66, 1937–1939 (2005)

    Article  Google Scholar 

  15. M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi, Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1 – xGax)Se2 solar cells, Prog. Photovolt: Res. Appl. 13, 209 (2005)

    Article  Google Scholar 

  16. R. Gupta, F. Yakuphanoglu, Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol. Energy 86, 1539–1545 (2012)

    Article  Google Scholar 

  17. G. Sakr, Characterization of Al/p-Si/n-AgGaSe2/Au thin films heterojunction device. Mater. Chem. Phys. 138, 951–955 (2013)

    Article  Google Scholar 

  18. M. Venkatachalam, M.D. Kannan, S. Jayakumar, R. Balasundaraprabhu, N. Muthukumarasamy, Effect of annealing on the structural properties of electron beam deposited CIGS thin films. Thin Solid Films 516, 6848–6852 (2008)

    Article  Google Scholar 

  19. D.-Y. Lee, S.J. Park, J.H. Kim, Structural analysis of CIGS film prepared by chemical spray deposition. Curr. Appl. Phys. 11, S88eS92 (2011)

    Article  Google Scholar 

  20. M. Thirumoorthi, J.T.J. Prakash, Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol–gel spin coating method, Super lattice. Microstructures 85, 237–247 (2015)

    Article  Google Scholar 

  21. M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J. Alloy. Compd. 705, 333–339 (2017)

    Article  Google Scholar 

  22. A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Structure, optical and electrochromic properties of NiO thin films. Phys. B 405, 3412–3420 (2010)

    Article  Google Scholar 

  23. V. Alberts, K.T. Hillie, C.M. Demanet, Atomic force microscopy imaging of polycrystalline CuInSe2 thin films. J. Microsc. 197, 206–215 (2000)

    Article  Google Scholar 

  24. A.M. Salem, Y.A. El-Gendy, G.B. Sakr, W.Z. Soliman, Optical properties of thermochromic Cu2HgI4 thin films. J. Phys. D 41, 025311 (2008). (7 pp).

    Article  Google Scholar 

  25. A.M. Salema, T.M. Dahya, Y.A. El-Gendy, Thickness dependence of optical parameters for ZnTe thin films deposited by electron beam gun evaporation technique. Phys. B 403, 3027–3033 (2008)

    Article  Google Scholar 

  26. P. Peranantham, Y.L. Jeyachandran, C. Viswanathan, N.N. Praveena, P.C. Chitra, D. Mangalaraj, Sa..K. Narayandass, The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films. Mater. Charact. 58, 756–764 (2007)

    Article  Google Scholar 

  27. M. Marikkannan, V. Vishnukanthan, A. Vijayshankar, J. Mayandi, A novel synthesis of tin oxide thin films by the sol-gel process for optoelectronic applications. AIP Adv. 5, 027122 (2015)

    Article  Google Scholar 

  28. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phps. E 16, 1214 (1983)

    Article  Google Scholar 

  29. J.C. Manifacier, J. Gasiot, J.P. Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. J. Phys. E: Sci. Instrum. 9, 1002 (1976)

    Article  Google Scholar 

  30. T.S. Moss, Optical Properties of Semiconductors, Buttenworths London 1959

    Google Scholar 

  31. J.F. Eloy, Power Lasers National Sch. Phys. Wiley, Grenoble, 1984

    Google Scholar 

  32. Y.M. Hunge, A.A. Yadav, M.A. Mahadik, R.N. Bulakhe, J.J. Shim, V.L. Mathe, C.H. Bhosale, Degradation of organic dyes using spray deposited nanocrystalline stratified WO3/TiO2 photoelectrodes under sunlight illumination. Opt. Mater. 76, 260–270 (2018)

    Article  Google Scholar 

  33. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  34. D. Gupta, S. Mukhopadhyay, K. Narayan, Fill factor in organic solar cells. Solar Energy Mater. 94, 1309–1313 (2010)

    Article  Google Scholar 

  35. F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, Y. Wang, Recent development of the inverted configuration organic solar cells. Solar Energy Mater. 95, 1785–1799 (2011)

    Article  Google Scholar 

  36. A. Alkaya, R. Kaplan, H. Canbolat, S. Hegedus, A comparison of fill factor and recombination losses in amorphous silicon solar cells on ZnO and SnO2. Renew. Energy 34, 1595–1599 (2009)

    Article  Google Scholar 

  37. K.F. Abd El-Rahman, A.A.A. Darwish, E.A.A. El-Shazly, Electrical and photovoltaic properties of SnSe/Si heterojunction. Mater. Sci. Semicond. Process. 25, 123–129 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge Dr. Badawi Anis, Spectroscopy Department, National Research Centre and Dr. Ahmed S.G. Khalil, Center for Environmental and Smart Technology, Faculty of Science, Fayoum University, Egypt, for providing the atomic force microscope measurements. This work was funded by the National Research Centre, Cairo, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talaat A. Hameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, T.A., El Radaf, I.M. & Elsayed-Ali, H.E. Characterization of CuInGeSe4 thin films and Al/n–Si/p–CuInGeSe4/Au heterojunction device. J Mater Sci: Mater Electron 29, 12584–12594 (2018). https://doi.org/10.1007/s10854-018-9375-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9375-7

Navigation