Skip to main content

Advertisement

Log in

Doping effect of urea on growth, spectral, thermal, mechanical, electrical, nonlinear and optical studies of Sr(HCOO)2·2H2O crystal: enhanced third-order NLO properties with a high laser-induced damage threshold

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pure and urea doped (with 3 different concentrations, viz. 0.005, 0.05, and 0.1 M) strontium formate dihydrate (SFD, Sr(HCOO)2·2H2O) single crystals were grown from aqueous solutions by using slow solvent evaporation technique. In order to understand the effect of urea doping on the structural, chemical, thermal, morphological, optical properties of SFD crystals, the grown crystals were characterized by carrying out CHN analysis, powder X-ray diffraction, high resolution X-ray diffraction, Fourier transform infrared spectral, thermogravimetric, UV–Vis–NIR spectral, photoluminescence spectral, second harmonic generation efficiency, and Z-scan measurements. The results obtained indicate that the urea molecule have entered into the SFD crystal matrix and has improved the crystallinity. Also, the results indicate that urea doping significantly tunes the optical and thermal properties without significantly distorting the crystal structure of SFD crystal. The laser damage threshold (LDT) energy for the grown crystal has been measured by using a Q-switched Nd:YAG laser as a source in single-shot mode (1064 nm, 10 Hz, 420 mJ). The result of laser damage threshold (LDT) energy indicates that grown title crystal has excellent resistance to laser radiation than those of some known inorganic NLO materials. Its third-order nonlinear optical properties were investigated by Z-scan technique and proved that the grown crystal possesses two-photon absorptions (TPA) and the self-defocusing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.A.M. Greena, X.S. Shajan, S. Kumaresan, Int. J. Mater. Sci. 5, 209 (2010)

    Google Scholar 

  2. J.A.M. Greena, K. Karuppasamy, R. Antony, X.S. Shajan, S. Kumaresan, Der Chem. Sinica. 3(5), 1229–1238 (2012)

    Google Scholar 

  3. J.A.M. Greena, K. Karuppasamy, R. Antony, X.S. Shajan, S. Kumaresan, Chem. Sci. Trans. 2(1), 141–146 (2013)

    Article  Google Scholar 

  4. P.J.L. Caligne, Acta Cryst. B. 27, 2429–2431 (1971)

    Article  Google Scholar 

  5. J.A.M. Greena, K. Karuppasamy, R. Antony, X.S. Shajan, S. Kumaresan, IOSR: J. Appl. Phys. 1(4), 25–28 (2013)

    Article  Google Scholar 

  6. S. Muthupoongodi, S.T.D. Manickam, C.K. Mahadevan, J.A.M. Greena, S. Balakumar, X.S. Shajan, J. Cryst. Growth 428, 46–53 (2015)

    Article  Google Scholar 

  7. S. Muthupoongodi, S.T.D. Manickam, C.K. Mahadevan, J.A.M. Greena, S. Balakumar, X.S. Shajan, Optik. 127, 4320–4323 (2016)

    Article  Google Scholar 

  8. M. Shi, Q. Cai, L. Yao, Y. Mao, Y. Ming, G. Ouyang, Cell Biol.Int 30, 221–226 (2006)

    Article  Google Scholar 

  9. M. Canadas, E.L. Torres, A.M. Aris, M.A. Mendrila, M.T. Sevilla, Polyhedron. 19, 2059–2064 (2000)

    Article  Google Scholar 

  10. B. Rosenberg, L. Van Camp, J.E. Trosko, V.H. Mansour, Nature. 222, 385–386 (1969)

    Article  Google Scholar 

  11. S.D. Cummings, Coord. Chem. Rev. 253, 449–478 (2009)

    Article  Google Scholar 

  12. B.K. Adams, E.M. Ferstl, M.C. Davis, M. Herold, S. Kurtkaya, R.F. Camalier, M.G. Hollingshead, G. Kaur, E.A. Sausville, F.R. Rickles, J.P. Snyder, D.C. Liotta, M. Shoji, Bioorg. Med. Chem. 12, 3871–3883 (2004)

    Article  Google Scholar 

  13. M.A. Jakupec, M. Galanski, B.K. Keppler, Rev. Physiol. Biochem. Pharmacol. 146, 1–53 (2003)

    Article  Google Scholar 

  14. F. Yang, G.P. Lim, A.N. Begum, O.J. Ubeda, M.R. Simmons, S.S. Ambegaokar, P.P. Chen, R. Kayed, C.G. Glabe, S.A. Frautschy, G.M. Cole, J. Biol. Chem. 280, 5892–5901 (2005)

    Article  Google Scholar 

  15. M. Przybyłek, D. Ziółkowska, M. Kobierski, K. Mroczyńska, P. Cysewski, J. Cryst. Growth. https://doi.org/10.1016/j.jcrysgro.2015.10.015

  16. R.N. Rai, S.R. Mudunuri, R.S.B. Reddi, V.S.A. Kumar Satuluri, S. Ganeshmoorthy, P.K. Gupta, J. Cryst. Growth 321, 72–77 (2011)

    Article  Google Scholar 

  17. P. Selvarajan, J.G.A. Raj, S. Perumal, J. Cryst. Growth 311, 3835–3840 (2009)

    Article  Google Scholar 

  18. K.L. Bye, P.W. Whipps, E.T. Keve, Ferroelectrics. 54, 51 (1984)

    Google Scholar 

  19. E.D. Dsilva, D.N. Rao, R. Philip, R.J. Butcher, Rajinikan, S.M. Dharmaprakash, Physica B. 406, 2206–2210 (2011)

    Article  Google Scholar 

  20. M. Rajalakshmi, R. Indirajith, M. Palanichamy, R. Gopalakrishnan, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 84, 43–50 (2011)

    Article  Google Scholar 

  21. M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  Google Scholar 

  22. W. Robert, Boyd, Nonlinear Optics (Academic Press, New York, 2007), , 3rd edn

    Google Scholar 

  23. S. Jeyaram, T. Geethakrishnan, Third-order nonlinear optical properties of acid Green 25 dye by Z-scan method. Opt. Laser Technol. 89, 179–185 (2017)

    Article  Google Scholar 

  24. Y.S. Zhou, E.B. Wang, J. Peng, Polyhedron 18, 1419–1423 (1999)

    Article  Google Scholar 

  25. P. Kalaiselvi, S. Alfred Cecil Raj, N. Vijayan, Optik 124, 6978–6982 (2013)

    Article  Google Scholar 

  26. M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. MohanKumar, Opt. Mater. 34, 988–995 (2014)

    Article  Google Scholar 

  27. M.K. Kumar, S. Sudhahar, A. Silambarasan, B.M. Sornamurthy, R.M. Kumar, Optik 125, 751–755 (2014)

    Article  Google Scholar 

  28. G. Pabitha, R. Dhanasekaran, Opt. Laser Technol. 50, 150–154 (2013)

    Article  Google Scholar 

  29. T.C. Sabari Girisun, S. Dhanuskodi, S. Vinitha, Mater. Chem. Phys. 129, 9–14 (2011)

    Article  Google Scholar 

  30. P. Vivek, R. Roop Kumar, P.J. Murugakoothan, Cryst. Growth 412, 40–48 (2015)

    Article  Google Scholar 

  31. M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. Mohan, Kumar, Opt. Mater. 34, 988–995 (2014)

    Article  Google Scholar 

  32. N. Vijayan, G. Bhagavannarayana, K.R. Ramesh, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors (Dr.S. Muthupoongodi, Dr. S. Theodore David Manickam and Dr. X. Sahaya Shajan) gratefully acknowledge the financial support received from the Board of Research in Nuclear Science - Department of Atomic Energy (BRNS-DAE), Mumbai, India with Sanction No: 2013/34/1/BRNS/No.0486 to carry out this research work. One of the authors (S. Muthupoongodi) acknowledges the Dr. T. Geethakrishnan, Department of Physics, University College of Engineering, Villupuram for providing Z-scan measurement. The authors also acknowledge Dr. S. Kalainathan Centre for Crystal Growth, VIT University, Vellore, India for providing laser damage facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sahaya Shajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthupoongodi, S., Manickam, S.T.D., Greena, J.A.M. et al. Doping effect of urea on growth, spectral, thermal, mechanical, electrical, nonlinear and optical studies of Sr(HCOO)2·2H2O crystal: enhanced third-order NLO properties with a high laser-induced damage threshold. J Mater Sci: Mater Electron 29, 12513–12525 (2018). https://doi.org/10.1007/s10854-018-9318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9318-3

Navigation