Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity

  • Man Zhou
  • Chujun Hou
  • Jingwen Chen
  • Jie Jin
  • Lijun Ju
  • Song Xu
  • Chao Yao
  • Zhongyu Li
Article
  • 2 Downloads

Abstract

Herein, for the first time, three-dimensionally ordered macroporous TiO2 (3DOM-TiO2) with well-tuned sizes of connecting windows were synthesized by regulation the driving force of the self-assembly process. 3DOM-TiO2 materials exhibit a clear relationship between photocatalytic activities and connecting window sizes, which provides a new perspective on the connecting window size effect. The possible mechanism of 3DOM-TiO2 with window-size dependent effect is also proposed, and it would guide further design and synthesis of highly efficient photocatalysts with controllable inverse opal structures.

Notes

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province, China (BK20150259) and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (17KJB150001).

References

  1. 1.
    P. Roy, S. Berger, P. Schmuki, TiO2 nanotubes: synthesis and applications. Angew. Chem. Int. Ed. 50(13), 2904–2939 (2011)CrossRefGoogle Scholar
  2. 2.
    Y.P. Tang, L. Hong, J.Q. Li, G.Y. Hou, H.Z. Cao, L.K. Wu, G.Q. Zheng, Q.L. Wu, An internal magnetic field strategy to reuse pulverized active materials for high performance: a magnetic three-dimensional ordered macroporous TiO2/CoPt/a-Fe2O3 nanocomposite anode. Chem. Commun. 53(38), 5298–5301 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Ma, X.L. Wang, Y.S. Jia, X.B. Chen, H.X. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114(19), 9987–10043 (2014)CrossRefGoogle Scholar
  4. 4.
    X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 5(9), 3601–3614 (2013)CrossRefGoogle Scholar
  5. 5.
    K. Zakrzewska, M. Radecka, TiO2-based nanomaterials for gas sensing-Influence of anatase and rutile contributions. Nanoscale Res. Lett. 12(1), 89–97 (2017)CrossRefGoogle Scholar
  6. 6.
    N. Wei, Y. Liu, T.T. Zhang, J. Liang, D.A. Wang, Hydrogenated TiO2 nanotube arrays with enhanced photoelectrochemical property for photocathodic protection under visible light. Mater. Lett. 185, 81–84 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Nanoparticulate TiO2(B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51(9), 2164–2167 (2012)CrossRefGoogle Scholar
  8. 8.
    S.J. Ding, J.S. Chen, D. Luan, F.Y.C. Boey, S. Madhavi, X.W. Lou, Graphene-supported anatase TiO2 nanosheets for fast lithium storage. Chem. Commun. 47(20), 5780–5782 (2011)CrossRefGoogle Scholar
  9. 9.
    Z.J. Jia, P. Xiu, P. Xiong, W.H. Zhou, Y. Cheng, S.C. Wei, Y.F. Zheng, T.F. Xi, H. Cai, Z.J. Liu, C.M. Wang, W.P. Zhang, Z.J. Li, Additively manufactured macroporous titanium with silverreleasing micro-/nanoporous surface for multipurpose infection control and bone repair—a proof of concept. ACS Appl. Mater. Interfaces 8, 28495–28510 (2016)CrossRefGoogle Scholar
  10. 10.
    K. Liang, X.C. Li, B.K. Tay, Study of bone morphogenetic protein-2 delivery with different TiO2 nanotube structures nanosci. Nanotechnol. Lett. 5(2), 162–166 (2013)CrossRefGoogle Scholar
  11. 11.
    M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, Z. Chen, K.Q. Zhang, S.S. Al-Deyab, Y.K. Lai, J. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. Mater. Chem. A 4(18), 6772–6801 (2016)CrossRefGoogle Scholar
  12. 12.
    C.P. Sajan, S. Wageh, A.A. AI-Ghamdi, J.G. Yu, S.W. Cao, TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Res. 9(1), 3–27 (2016)CrossRefGoogle Scholar
  13. 13.
    T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Zhao, Z.Y. Hu, J. Liu, Y. Li, M. Wu, G.V. Tendeloo, B.L. Su, Blue-edge slow photons promoting visible-light hydrogen production on gradient ternary 3DOM TiO2-Au-CdS photonic crystals. Nano Energy 47, 266–274 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Lui, G. Li, X.L. Wang, G.P. Jiang, E. Lin, M. Fowler, A.P. Yu, Z.W. Chen, Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode-electrolyte interaction in high-power Li-ion batteries. Nano Energy 24, 72–77 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Zalfani, Z.Y. Hu, W.B. Yu, M. Mahdouani, R. Bourguiga, M. Wu, Y. Li, G.V. Tendeloo, Y. Djaoued, B.L. Su, BiVO4/3DOM TiO2 nanocomposites: effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants. Appl. Catal. B 205, 121–132 (2017)CrossRefGoogle Scholar
  17. 17.
    N. Guo, Y.M. Liang, S. Lan, L. Liu, J.J. Zhang, G.J. Ji, S.C. Gan, Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J. Phys. Chem. C 118(32), 18343–18355 (2014)CrossRefGoogle Scholar
  18. 18.
    Q. Zhang, Q.F. Zhao, Y. Zhang, N. Han, L. Hu, C. Zhang, T.Y. Jiang, S.L. Wang, Investigation of 3-D ordered materials with a high adsorption capacity for BSA and their potential application as an oral vaccine adjuvant. J. Colloid Interface Sci. 434(10), 113–121 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Jin, S.Z. Huang, J. Liu, Y. Li, D.S. Chen, H.E. Wang, Y. Yu, L.H. Chen, B.L. Su, Design of new anode materials based on hierarchical, three dimensional ordered macromesoporous TiO2 for high performance lithium ion batteries. J. Mater. Chem. A 2(25), 9699–9708 (2014)CrossRefGoogle Scholar
  20. 20.
    B.X. Li, Y.G. Hao, X.K. Shao, H.D. Tang, T. Wang, J.B. Zhu, S.L. Yan, Synthesis of hierarchically porous metal oxides and Au/TiO2 nanohybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol. J. Catal. 329, 368–378 (2015)CrossRefGoogle Scholar
  21. 21.
    W.F. Liu, A.J. Wang, J.J. Tang, S.L. Chen, G.M. Yuan, K. Zhao, C.X. Li, X.C. Liu, Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films. Microporous Mesoporous Mater. 204, 143–148 (2015)CrossRefGoogle Scholar
  22. 22.
    J.Q. Jiao, Y.C. Wei, Y.L. Zhao, Z. Zhao, A.J. Duan, J. Liu, Y.Y. Pang, J.M. Li, G.Y. Jiang, Y.J. Wang, AuPd/3DOM-TiO2 catalysts for photocatalytic reduction of CO2: high efficient separation of photogenerated charge carriers. Appl. Catal. B 209, 228–239 (2017)CrossRefGoogle Scholar
  23. 23.
    A. Stein, B.E. Wilson, S.G. Rudisill, Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem. Soc. Rev. 42(24), 2763–2803 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Wang, D. Baiyila, X. Li, Macroporous TiO2 encapsulated Au@Pd bimetal nanoparticles for the photocatalytic oxidation of alcohols in water under visible-light. RSC Adv. 6(109), 107233–107238 (2016)CrossRefGoogle Scholar
  25. 25.
    W.J. Zhang, X.Z. Zhang, Z.X. Zhang, W.H. Wang, A.J. Xie, C.H. Xiao, H. Zhang, Y.H. Shen, A nitrogen-doped carbon dot-sensitized TiO2 inverse opal film: preparation, enhanced photoelectrochemical and photocatalytic performance. J. Electrochem. Soc. 162(9), 638–644 (2015)CrossRefGoogle Scholar
  26. 26.
    Z.X. Zhao, G.C. Liu, B. Li, L.X. Guo, C.B. Fei, Y.J. Wang, L.L. Lv, X.G. Liu, J.J. Tian, G.Z. Cao, Dye-sensitized solar cells based on hierarchicallystructured porous TiO2 filled with nanoparticles. J. Mater. Chem. A 3(21), 11320–11329 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Srinivasan, T. White, Degradation of methylene blue by three-dimensionally ordered macroporous titania. Environ. Sci. Technol. 41(12), 4405–4409 (2007)CrossRefGoogle Scholar
  28. 28.
    X.Z. Zheng, S.G. Meng, J. Chen, J.X. Wang, J.J. Xian, Y. Shao, X.Z. Fu, D.Z. Li, Titanium dioxide photonic crystals with enhanced photocatalytic activity: matching photonic band gaps of TiO2 to the absorption peaks of dyes. J. Phys. Chem. C 117(41), 21263–21273 (2013)CrossRefGoogle Scholar
  29. 29.
    S.S. Mathew, S. Ma, I. Kretzschmar, Three-dimensionally ordered macroporous TiO2 electrodes: fabrication of inverse TiO2 opals for pore-size-dependent characterization. J. Mater. Res. 28(3), 369–377 (2013)CrossRefGoogle Scholar
  30. 30.
    Y. Liu, K. Lan, A.A. Bagabas, P.F. Zhang, W.J. Gao, J.X. Wang, Z.K. Sun, J.W. Fan, A.A. Elzatahry, D.Y. Zhao, Ordered macro/mesoporous TiO2 hollow microspheres with highly crystalline thin shells for high-efficiency photoconversion. Small 12(7), 860–867 (2016)CrossRefGoogle Scholar
  31. 31.
    H.L. Jiang, X.L. Yang, C. Chen, Y.H. Zhu, C.Z. Li, Facile and controllable fabrication of three-dimensionally quasi-ordered macroporous TiO2 for high performance lithium-ion battery applications. New J. Chem. 37(5), 1578–1583 (2013)CrossRefGoogle Scholar
  32. 32.
    N.D. Petkovich, S.G. Rudisill, B.E. Wilson, A. Mukherjee, A. Stein, Control of TiO2 grain size and positioning in three-dimensionally ordered macroporous TiO2/C composite anodes for lithium ion batteries. Inorg. Chem. 53(2), 1100–1112 (2014)CrossRefGoogle Scholar
  33. 33.
    J.D. Zhuang, Q.F. Tian, Q. Liu, P. Liu, X.R. Cui, Y.Q. Li, M.Z. Fan, New insight into binary TiO2@C nanocomposites: the crucial effect of an interfacial microstructure. Phys. Chem. Chem. Phys. 19, 9519–9527 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Man Zhou
    • 1
    • 2
  • Chujun Hou
    • 1
  • Jingwen Chen
    • 1
  • Jie Jin
    • 1
  • Lijun Ju
    • 1
  • Song Xu
    • 1
  • Chao Yao
    • 1
  • Zhongyu Li
    • 1
    • 3
  1. 1.Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou UniversityChangzhouChina
  2. 2.Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou UniversityChangzhouChina
  3. 3.School of Environmental and Safety EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations