Advertisement

Photocatalytic activity and magnetic enhancements by addition of lanthanum into the BiFeO3 structure and the effect of synthesis method

  • Hamed Maleki
Article
  • 139 Downloads

Abstract

In this paper, the photocatalytic activity, as well as the magnetic enhancement of multiferroics BiFeO3 (BFO) and Bi0.8La0.2FeO3 (BLFO) nanocrystals with two different morphologies, synthesized by two different sol–gel and hydrothermal (HT) methods, have been studied. All the obtained samples were characterized using X-ray diffractometer, Fourier transform infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy and vibrating sample magnetometer. Differential thermal analysis measurements were probed ferroelectric- paraelectric first-order phase transition (TC) for all samples. Addition of lanthanum decreases the electric phase transition. For photocatalyst application of bismuth ferrite, adsorption potential of nanoparticles for methylene blue (MB) organic dye was evaluated. The doping of La in the BFO structure enhanced the photocatalytic activity and about 71% degradation of MB dye was obtained under visible irradiation. The magnetic properties of BLFO nanoparticles improve compared to the undoped BiFeO3 nanoparticles. The non-saturation at high applied magnetic field for as-prepared samples by HT is related to the size and shape of products. This work not only presents an effect of 20 mol% lanthanum substitution into the bismuth ferrite structure on the physical properties of BFO, but also compares the synthesis method and its influence on the photocatalytic activity and multiferroics properties of all nanopowders.

Notes

Acknowledgements

This work was supported by the research council of Shahid Bahonar University of Kerman (SBUK-RC). Partial financial support by Iranian nanotechnology initiative council (INIC) are acknowledged.

References

  1. 1.
    M. Humayun, A. Zada, Z. Li, M. Xie, X. Zhang, Y. Qu, F. Raziq, L. Jing, Appl. Catal. B 180, 219 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Wu, W. Han, S.X. Zhou, M.V. Lototsky, J.K. Solberg, V.A. Yartys, J. Alloy. Compd. 466(1–2), 176 (2008)CrossRefGoogle Scholar
  3. 3.
    S. Wang, D. Chen, F. Niu, N. Zhang, L. Qin, Y. Huang, J. Alloy. Compd. 688, 399 (2016)CrossRefGoogle Scholar
  4. 4.
    C.M. Cho, J.H. Noh, I.-S. Cho, J.-S. An, K.S. Hong, J.Y. Kim, J. Am. Ceram. Soc. 91(11), 3753 (2008)CrossRefGoogle Scholar
  5. 5.
    F. Gao, X.Y. Chen, K.B. Yin, S. Dong, Z.F. Ren, F. Yuan, T. Yu, Z.G. Zou, J.-M. Liu, Adv. Mater. 19(19), 2889 (2007)CrossRefGoogle Scholar
  6. 6.
    Y.-L. Pei, C. Zhang, J. Alloy. Compd. 570, 57 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Maleki, J. Magn. Magn. Mater. 458, 277 (2018)CrossRefGoogle Scholar
  8. 8.
    S. Irfan, Y. Shen, S. Rizwan, H.-C. Wang, S.B. Khan, C.-W. Nan, J. Am. Ceram. Soc. 100(1), 31 (2017)CrossRefGoogle Scholar
  9. 9.
    S. Irfan, L. Li, A.S. Saleemi, C.-W. Nan, J. Mater. Chemistry A 5(22), 11143 (2017)CrossRefGoogle Scholar
  10. 10.
    C.C. Chen, T. Fan, J. Mater. Sci. 28(14), 10019 (2017)Google Scholar
  11. 11.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299(5613), 1719 (2003)CrossRefGoogle Scholar
  12. 12.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442(7104), 759 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. 23(9), 1062 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Maleki, M. Haselpour, R. Fathi, J. Mater. Sci. 29(5), 4320 (2018)Google Scholar
  15. 15.
    A. Sarkar, G.G. Khan, A. Chaudhuri, A. Das, K. Mandal, Appl. Phys. Lett. 108(3), 33112 (2016)CrossRefGoogle Scholar
  16. 16.
    S.K. Mandal, T. Rakshit, S.K. Ray, S.K. Mishra, P.S.R. Krishna, A. Chandra, J. Phys. 25(5), 55303 (2013)Google Scholar
  17. 17.
    Y. Bai, T. Siponkoski, J. Peräntie, H. Jantunen, J. Juuti, Appl. Phys. Lett. 110(6), 63903 (2017)CrossRefGoogle Scholar
  18. 18.
    P.P. Biswas, T. Chinthakuntla, D. Duraisamy, G. Nambi Venkatesan, S. Venkatachalam, P. Murugavel, Appl. Phys. Lett. 110(19), 192906 (2017)CrossRefGoogle Scholar
  19. 19.
    G. Catalan, J.F. Scott, Adv. Mater. 21(24), 2463 (2009)CrossRefGoogle Scholar
  20. 20.
    D. Wang, M. Wang, F. Liu, Y. Cui, Q. Zhao, H. Sun, H. Jin, M. Cao, Ceram. Int. 41(7), 8768 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Fki, M. Koubaa, L. Sicard, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, S. Ammar-Merah, Ceram. Int. 43(5) 4139 (2017)CrossRefGoogle Scholar
  22. 22.
    G.A. Smolenskii, V.A. Bokov, J. Appl. Phys. 35(3), 915 (1964)CrossRefGoogle Scholar
  23. 23.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C 13(10), 1931 (1980)CrossRefGoogle Scholar
  24. 24.
    I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C 15(23), 4835 (1982)CrossRefGoogle Scholar
  25. 25.
    J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32(6), 1315 (1971)CrossRefGoogle Scholar
  26. 26.
    R.T. Smith, G.D. Achenbach, R. Gerson, W.J. James, J. Appl. Phys. 39(1), 70 (1968)CrossRefGoogle Scholar
  27. 27.
    C. Ederer, N.A. Spaldin, Phys. Rev. B 71(6), 60401 (2005)CrossRefGoogle Scholar
  28. 28.
    D. Sando, A. Barthélémy, M. Bibes, J. Phys. 26(47), 473201 (2014)Google Scholar
  29. 29.
    J.T. Heron, D.G. Schlom, R. Ramesh, Appl. Phys. Rev. 1(2), 21303 (2014)CrossRefGoogle Scholar
  30. 30.
    F. Huang, X. Lu, W. Lin, X. Wu, Y. Kan, J. Zhu, Appl. Phys. Lett. 89(24), 242914 (2006)CrossRefGoogle Scholar
  31. 31.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.-M. Liu, Z.G. Liu, Appl. Phys. Lett. 84(10), 1731 (2004)CrossRefGoogle Scholar
  32. 32.
    J.-H. Xu, H. Ke, D.-C. Jia, W. Wang, Y. Zhou, J. Alloy. Compd. 472(1–2), 473 (2009)CrossRefGoogle Scholar
  33. 33.
    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71(1), 14113 (2005)CrossRefGoogle Scholar
  34. 34.
    T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5(10), 823 (2006)CrossRefGoogle Scholar
  35. 35.
    D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J.F. Marucco, S. Fusil, Phys. Rev. B 76(2), 24116 (2007)CrossRefGoogle Scholar
  36. 36.
    K.T. Liu, J. Li, J.B. Xu, F.L. Xu, L. Wang, L. Bian, J. Mater. Sci. 28(7), 5609 (2017)Google Scholar
  37. 37.
    G. Kolhatkar, F. Ambriz-Vargas, R. Thomas, A. Ruediger, Cryst. Growth Des. 17(11), 5697 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Hua, G. Bao, C. Li, Y. Zhu, J. Yang, X. Li, J. Mater. Sci. 28(22), 17283 (2017)Google Scholar
  39. 39.
    R. Safi, H. Shokrollahi, Prog. Solid State Chem. 40(1–2), 6 (2012)CrossRefGoogle Scholar
  40. 40.
    J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integr Ferroelectr 126(1), 47 (2011)CrossRefGoogle Scholar
  41. 41.
    D. Varshney, A. Kumar, K. Verma, J. Alloy. Compd. 509(33), 8421 (2011)CrossRefGoogle Scholar
  42. 42.
    H. Singh, K.L. Yadav, J. Phys. 23(38), 385901 (2011)Google Scholar
  43. 43.
    Y.-H. Lee, J.-M. Wu, C.-H. Lai, Appl. Phys. Lett. 88(4), 42903 (2006)CrossRefGoogle Scholar
  44. 44.
    F.Z. Li, H.W. Zheng, M.S. Zhu, X.A. Zhang, G.L. Yuan, Z.S. Xie, X.H. Li, G.T. Yue, W.F. Zhang, J. Mater. Chem. C 5(40), 10615 (2017)CrossRefGoogle Scholar
  45. 45.
    T.D. Rao, S. Asthana, J. Appl. Phys. 116(16), 164102 (2014)CrossRefGoogle Scholar
  46. 46.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86(6) 62903 (2005)CrossRefGoogle Scholar
  47. 47.
    X. Zhang, Y. Sui, X. Wang, Y. Wang, Z. Wang, J. Alloy. Compd. 507(1), 157 (2010)CrossRefGoogle Scholar
  48. 48.
    Q.R. Yao, Y.H. Shen, P.C. Yang, H.Y. Zhou, G.H. Rao, Z.M. Wang, J.Q. Deng, Ceram. Int. 42(5), 6100 (2016)CrossRefGoogle Scholar
  49. 49.
    B. Yotburut, P. Thongbai, T. Yamwong, S. Maensiri, Ceram. Int. 43(7), 5616 (2017)CrossRefGoogle Scholar
  50. 50.
    M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, S. Khasa, A. Agarwal, Ceram. Int. 43(15), 12095 (2017)CrossRefGoogle Scholar
  51. 51.
    R. Guo, L. Fang, W. Dong, F. Zheng, M. Shen, J. Phys. Chem. C 114(49), 21390 (2010)CrossRefGoogle Scholar
  52. 52.
    Y. Zhang, A.M. Schultz, P.A. Salvador, G.S. Rohrer, J. Mater. Chem. 21(12), 4168 (2011)CrossRefGoogle Scholar
  53. 53.
    C. Ponraj, V.G.J. Daniel, Environ. Nanotechnol. Monit. Manag. 7, 110 (2017)CrossRefGoogle Scholar
  54. 54.
    Z. Chen, J. Liu, Y. Qi, D. Chen, S.-L. Hsu, A.R. Damodaran, X. He, A.T. N’Diaye, A. Rockett, L.W. Martin, Nano Lett. 15(10), 6506 (2015)CrossRefGoogle Scholar
  55. 55.
    R. Dhanalakshmi, M. Muneeswaran, K. Shalini, N.V. Giridharan, Mater. Lett. 165, 205 (2016)CrossRefGoogle Scholar
  56. 56.
    Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, T.R. Shrout, J. Appl. Phys. 103(7), 07E507 (2008)CrossRefGoogle Scholar
  57. 57.
    J. Seidel, P. Maksymovych, Y. Batra, A. Katan, S.-Y. Yang, Q. He, A.P. Baddorf, S.V. Kalinin, C.-H. Yang, J.-C. Yang, Y.-H. Chu, E.K.H. Salje, H. Wormeester, M. Salmeron, R. Ramesh, Phys. Rev. Lett. 105(19), 197603 (2010)CrossRefGoogle Scholar
  58. 58.
    F. Yan, M.-O. Lai, L. Lu, T.-J. Zhu, J. Phys. D 44(43), 435302 (2011)CrossRefGoogle Scholar
  59. 59.
    P.P. Ortega, L.S.R. Rocha, C.C. Silva, M. Cilense, R.A.C. Amoresi, E. Longo, A.Z. Simões, Ceram. Int. 42(15), 16521 (2016)CrossRefGoogle Scholar
  60. 60.
    P. Kumar, P. Chand, J. Alloy. Compd. 748, 504 (2018)CrossRefGoogle Scholar
  61. 61.
    Q.Q. Wang, C.C. Wang, N. Zhang, H. Wang, Y.D. Li, Q.J. Li, S.G. Huang, Y. Yu, Y.M. Guo, Z.Q. Lin, J. Alloy. Compd. 745, 401 (2018)CrossRefGoogle Scholar
  62. 62.
    W. Ge, A. Rahman, H. Cheng, M. Zhang, J. Liu, Z. Zhang, B. Ye, J. Magn. Magn. Mater. 449, 401 (2018)CrossRefGoogle Scholar
  63. 63.
    F. Xue, L. Tang, G. Jian, W. Li, J. Mater. Sci. 28(13), 9344 (2017)Google Scholar
  64. 64.
    H. Maleki, S. Zare, R. Fathi, J. Supercond. Novel Magn. 2017, 1 (2017)Google Scholar
  65. 65.
    H. Maleki, S. Falahatnezhad, M. Taraz, J. Supercond. Novel Magn. 2018, 1 (2018)Google Scholar
  66. 66.
    H. Maleki, M. Kazemeini, J. Fuel Chem. Technol. 45(4), 442 (2017)CrossRefGoogle Scholar
  67. 67.
    A. Brisdon, Appl. Organomet. Chem. 24(6), 424 (2010)Google Scholar
  68. 68.
    T. Gholam, A. Ablat, M. Mamat, R. Wu, A. Aimidula, M.A. Bake, L. Zheng, J. Wang, H. Qian, R. Wu, K. Ibrahim, J. Alloy. Compd. 710, 843 (2017)CrossRefGoogle Scholar
  69. 69.
    X. Yang, G. Xu, Z. Ren, X. Wei, C. Chao, S. Gong, G. Shen, G. Han, CrystEngComm 16(20), 4176 (2014)CrossRefGoogle Scholar
  70. 70.
    S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Appl. Phys. Lett. 94(11), 112903 (2009)CrossRefGoogle Scholar
  71. 71.
    W. Mao, X. Wang, L. Chu, Y. Zhu, Q. Wang, J. Zhang, J. Yang, X. Li, W. Huang, Phys. Chem. Chem. Phys. 18(9), 6399 (2016)CrossRefGoogle Scholar
  72. 72.
    W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, W. Huang, Ceram. Int. 42(11), 12838 (2016)CrossRefGoogle Scholar
  73. 73.
    J. Tauc, Mater. Res. Bull. 5(8), 721 (1970)CrossRefGoogle Scholar
  74. 74.
    X.H. Wang, J.-G. Li, H. Kamiyama, Y. Moriyoshi, T. Ishigaki, J. Phys. Chem. B 110(13), 6804 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsShahid Bahonar University of KermanKermanIran

Personalised recommendations