Skip to main content
Log in

Growth and characterization of high quality CIGS films using novel precursors stacked and surface sulfurization process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study produces high quality Cu(In,Ga)Se2 (CIGS) solar cells using a two-step process. Stacked In (200 nm)/CuGa (150 ~ 300 nm)/In (500 nm) layers are deposited onto Mo bilayer soda-lime glass by sputtering, using CuGa and In targets, followed by vapor stacking of the elemental Se layers. To produce the CIGS film, the CuGa film is coated in thicknesses of 150, 200, 250 and 300 nm. An appropriate atomic ratio [Cu/(In + Ga), CGI and Ga/(In + Ga), GGI] for the precursors and the CIGS absorption layers composition is easily obtained. Compared to those for the as-deposited precursors, after selenization, the CGI and GGI ratios for CIGS films are almost constant. All CIGS thin films exhibit a peak in the Raman curves at around 173–174 cm−1, which is identified as the CIGS phase. Following sulfurization, the main peaks for CIGS thin films at (112), (220)/(204) and (312)/(116) indicated that the crystalline quaility were improved. The main peaks for the CIGSS films are slightly greater for (112), (220)/(204) and (312)/(116). The band gap energy is increased from 1.19 eV (for the as-grown) to 1.34 eV (for the absorber layer that is sulfurized at 500 °C for 10 min). The performance of the CIGS absorber films is improved by using a proper holding time for sulfurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.R. Zhang, T. Li, Y.C. Chen, W. Pang, M.H. Qu, X.M. Song, Y.Z. Zhang, H. Yan, J. Mater. Sci.-Mater. Electron. 29, 3482 (2018)

    Article  Google Scholar 

  2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovolt: Res. Appl. 19, 894 (2011)

    Article  Google Scholar 

  3. P. Zou, L. Wan, S.H. Pan, M.M. Meng, Z.Q. Guo, J.Z. Xu, J. Mater. Sci.-Mater. Electron. 24, 4530 (2013)

    Article  Google Scholar 

  4. Y.C. Lin, Z.Q. Lin, C.H. Shen, L.Q. Wang, C.T. Ha, C. Peng, J. Mater. Sci.-Mater. Electron. 23, 493 (2012)

    Article  Google Scholar 

  5. H.T. Lu, C.Y. Ou, C.H. Lu, J. Mater. Sci.-Mater. Electron. 29, 1614 (2018)

    Article  Google Scholar 

  6. L. Sun, J.H. Ma, N.J. Yao, Z.M. Huang, J.H. Chu, J. Mater. Sci.-Mater. Electron. 27, 9124 (2016)

    Article  Google Scholar 

  7. R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, Appl. Phys. Lett. 63, 3294 (1993)

    Article  Google Scholar 

  8. J. Wang, J. Zhu, L.L. Liao, J. Mater. Sci.-Mater. Electron. 25, 1863 (2014)

    Article  Google Scholar 

  9. K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, D. BraKunig, Sol. Energy Mat. Sol. Cells 67, 159 (2001)

    Article  Google Scholar 

  10. S.H. Chun, Y.H. Kwon, H.K. Cho, J. Mater. Sci.-Mater. Electron. 25, 3492 (2014)

    Article  Google Scholar 

  11. P.C. Huang, C.C. Sung, J.H. Chen, R.C. Hsiao, C.Y. Hsu, J. Mater. Sci.-Mater. Electron. 29, 1444 (2018)

    Article  Google Scholar 

  12. S.U. Park, R. Sharma, K. Ashok, S. Kang, J.K. Sim, C.R. Lee, J. Cryst. Growth 359, 1 (2012)

    Article  Google Scholar 

  13. S. Kang, R. Sharma, J.K. Sim, C.R. Lee, J. Alloy Compd. 563, 207 (2013)

    Article  Google Scholar 

  14. H.R. Hsu, S.C. Hsu, Y.S. Liu, Appl. Phys. Lett. 100, 233903 (2012)

    Article  Google Scholar 

  15. L.R. Zhang, L. Li, Y.C. Chen, W. Pang, M.H. Qu, X.M. Song, Y.Z. Zhang, H. Yan, J. Mater. Sci.-Mater. Electron. 29, 3482 (2018)

    Article  Google Scholar 

  16. P.C. Huang, C.H. Huang, M.Y. Lin, C.Y. Chou, C.Y. Hsu, C.G. Kuo, Int. J. Photoenergy (2013). https://doi.org/10.1155/2013/390824

    Google Scholar 

  17. D.G. Moon, S. Ahn, J.H. Yun, A. Cho, J. Gwak, S. Ahn, K. Shin, K. Yoon, H.D. Lee, H. Pak, S. Kwon, Sol. Energy Mater. Sol. Cells 95, 2786 (2011)

    Article  Google Scholar 

  18. Y. Cho, D.W. Kim, S. Ahn, D. Nam, H. Cheong, G.Y. Jeong, J. Gwak, J.H. Yun, Thin Solid Films 546, 358 (2013)

    Article  Google Scholar 

  19. J. Liu, A.X. Wei, Y. Zhao, Z.Q. Yan, J. Mater. Sci.-Mater. Electron. 24, 2553 (2013)

    Article  Google Scholar 

  20. G.Y. Kim, W. Jo, H.J. Jo, D.H. Kim, J.K. Kang, Curr. Appl. Phys. 15, S44 (2015)

    Article  Google Scholar 

  21. J. Han, J. Koo, H. Jung, W.K. Kim, J. Alloys Compd. 552, 131 (2013)

    Article  Google Scholar 

  22. A.B. Marai, J.B. Belgacem, Z.B. Ayadi, K. Djessas, S. Alaya, J. Alloys Compd. 658, 961 (2016)

    Article  Google Scholar 

  23. T. Sidali, A. Duchatelet, E. Chassaing, D. Lincot, Thin Solid Films 582, 69 (2015)

    Article  Google Scholar 

  24. H.H. Sung, D.C. Tsai, Z.C. Chang, B.H. Kuo, Y.C. Lin, T.J. Lin, S.C. Liang, F.S. Shieu, Surf. Coat. Technol. 259, 335 (2014)

    Article  Google Scholar 

  25. R. Caballero, C.A. Kaufmann, V. Efimova, T. Rissom, V. Hoffmann, H.W. Schock, Prog. Photovolt: Res. Appl. 21, 30 (2013)

    Article  Google Scholar 

  26. Z. Yu, C. Yan, T. Huang, W. Huang, Y. Yan, Y. Zhang, L. Liu, Y. Zhang, Y. Zhao, Appl. Surf. Sci. 258, 5222 (2012)

    Article  Google Scholar 

  27. D. Lee, J.Y. Yang, Y.S. Kim, C.B. Mo, S. Park, B. Kim, D. Kim, J. Nam, Y. Kang, Sol. Energy Mater. Sol. Cells 149, 195 (2016)

    Article  Google Scholar 

  28. J. Liu, D.M. Zhuang, M.J. Cao, X.L. Li, M. Xie, D.W. Xu, Vacuum 102, 26 (2014)

    Article  Google Scholar 

  29. J. Koo, S. Jeon, M. Oh, H. Cho, C. Son, W.K. Kim, Thin Solid Films 535, 148 (2013)

    Article  Google Scholar 

  30. U.P. Singh, W.N. Shafarman, R.W. Birkmire, Sol. Energy Mater. Sol. Cells 90, 623 (2006)

    Article  Google Scholar 

  31. J.W. Jang, S.M. Lee, I.J. Choi, Y.S. Cho, J. Alloys Compd. 710, 177 (2017)

    Article  Google Scholar 

  32. S.H. Lin, J.C. Sung, C.H. Lu, Thin Solid Films 616, 746 (2016)

    Article  Google Scholar 

  33. V. Alberts, Semicond. Sci. Technol. 22, 585 (2007)

    Article  Google Scholar 

  34. Y. Goushi, H. Hakuma, K. Tabuchi, S. Kijima, K. Kushiya, Sol. Energy Mater. Sol. Cells 93, 1318 (2009)

    Article  Google Scholar 

  35. H.T. Lu, C.Y. Yang, C.H. Lu, J. Mater. Sci.-Mater. Electron. 27, 10642 (2016)

    Article  Google Scholar 

  36. T. Kobayashi, H. Yamaguchi, Z.J.L. Kao, H. Sugimoto, T. Kato, H. Hakuma, T. Nakada, Prog. Photovolt: Res. Appl. 23, 1367 (2015)

    Article  Google Scholar 

  37. X. Liu, Z. Liu, F. Meng, M. Sugiyama, Sol. Energy Mater. Sol. Cells 124, 227 (2014)

    Article  Google Scholar 

  38. Y. Xie, H. Chen, A. Li, X. Zhu, L. Zhang, M. Qin, Y. Wang, Y. Liu, F. Huang, J. Mater. Chem. A 2, 13237 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Ministry of Science and Technology of the Republic of China, through Grant nos. MOST 104-2221-E-262-011-, and the Chung-Shan Institute of Science & Technology, through Grant nos. CSIST-305-V302 (Armaments Bureau).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruey-Chang Hsiao or Chun-Yao Hsu.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CH., Wu, PW., Hsiao, RC. et al. Growth and characterization of high quality CIGS films using novel precursors stacked and surface sulfurization process. J Mater Sci: Mater Electron 29, 11429–11438 (2018). https://doi.org/10.1007/s10854-018-9235-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9235-5

Navigation