Facile synthesis of Co-CoOx/N-doped carbon nanotubes hybrids as efficient and bifunctional catalysts for hydrogen and oxygen evolution

  • Changhai Liu
  • Ke Wang
  • Jin Zhang
  • Xuerui Zheng
  • Qian Liang
  • Zhidong Chen


Developing low-cost, efficient, and bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an attractive yet challenging task. Herein, we report a novel, simple and one-pot method to fabricate ultrafinely dispersed Co-CoOx nanoparticles encapsulated in a nitrogen doped carbon nanotubes (denoted as Co-CoOx/CN) via an efficient thermal condensation of d-glucosamine hydrochloride, melamine and Co(NO3)2·H2O. A well-designed Co-CoOx based hybrid that possesses high activity and excellent durability for the OER and HER in alkaline solution has been fabricated. The catalyst displays good stability for 30,000 s and small Tafel slope of 82 mV per decade for OER and 110 mV per decade for HER. Detailed electrochemical and physical studies indicate that the high OER and HER activity of the hybrid catalyst arises from the strong interaction between Co-based NPs and N-doped carbon nanotubes, and especially the synergistic effect of Co and cobalt oxide.



The authors greatly acknowledge financial support from the National Natural Science Foundation of China (Nos. 51702025, 51574047), Natural Science Foundation of Jiangsu Province (Nos. BK20160277, BK20150259), Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 16KJA430004).

Supplementary material

10854_2018_9140_MOESM1_ESM.docx (935 kb)
Supplementary material 1 (DOCX 935 KB)


  1. 1.
    Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.H. Song, H.J. Dai, J. Am. Chem. Soc. 133, 7296–7299 (2011)CrossRefGoogle Scholar
  2. 2.
    F. Safizadeh, E. Ghali, G. Houlachi, Int. J. Hydrog. Energy 40, 256–274 (2015)CrossRefGoogle Scholar
  3. 3.
    P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5, 1500985 (2015)CrossRefGoogle Scholar
  4. 4.
    J.S. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. .Park, S.D. Tilley, H.I. Fan, M. Grätzel, Science 345, 1593–1596 (2014)CrossRefGoogle Scholar
  5. 5.
    N. Jiang, B. You, M. Sheng, Y.J. Sun, Angew. Chem. Int. Ed. 127, 6349–6352 (2015)CrossRefGoogle Scholar
  6. 6.
    D.N. Liu, Q. Lu, Y.L. Luo, X.P. Sun, A.M. Asiri, Nanoscale 7, 15122–15126 (2015)CrossRefGoogle Scholar
  7. 7.
    X.L. Cai, C.H. Liu, J. Liu, Y. Lu, Y.N. Zhong, K.Q. nie, J.L. Xu, X. Gao, S.D. Wang, Nano-Micro Lett. 9, 48 (2017)CrossRefGoogle Scholar
  8. 8.
    M. Chhetri, S. Maitra, H. Chakraborty, U.V. Waghmare, C.N.R. Rao, Energy Environ. Sci. 9, 95–101 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Yu, Q. Li, Y. Li, C.Y. Xu, L. Zhen, V.P. Dravid, J. Wu, Adv. Funct. Mater. 26, 7644–7651 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Xie, Y. Deng, C. Yang, Z. Zeng, Y. Li, G. Chen, J. Alloys Compd. 696, 257–265 (2017)CrossRefGoogle Scholar
  11. 11.
    Q.B. Yang, Y. He, Y. Fan, F. Li, X. Chen., J. Mater. Sci.: Mater. Electron. 28, 7413–7418 (2017)Google Scholar
  12. 12.
    J.H. Wang, W. Cui, Q. Liu, Z.C. Xing, A.M. Asiri, X.P. Sun, Adv. Mater. 28, 215–230 (2016)CrossRefGoogle Scholar
  13. 13.
    X.F. Zhou, X.L. Yang, H.N. Li, M.N. Hedhili, K.W. Huang, L.J. Li, W.J. Zhang, J. Mater. Chem. A 5, 15552–15558 (2017)CrossRefGoogle Scholar
  14. 14.
    H.Q. Zhou, F. Yu, J.Y. Sun, H.T. Zhu, I.K. Mishra, S. Chen, Z.F. Ren, Nano Lett. 16, 7604–7609 (2016)CrossRefGoogle Scholar
  15. 15.
    Q. Liu, J.Q. Tian, W. Cui, P. Jiang, N.Y. Cheng, A.M. Asiri, X.P. Sun, Angew. Chem. Int. Ed. 126, 6828–6832 (2014)CrossRefGoogle Scholar
  16. 16.
    G.F. Chen, T.Y. Ma, Z.Q. Liu, N. Li, Y.Z. Su, K. Davey, S.Z. Qiao, Adv. Funct. Mater. 26, 3314–3323 (2016)CrossRefGoogle Scholar
  17. 17.
    C.C. Du, M.X. Shang, J.X. Mao, W.B. Song, J. Mater. Chem. A 5, 15940–15949 (2017)CrossRefGoogle Scholar
  18. 18.
    X. Wang, Y. Chen, B. Zheng, F. Qi, J. He, Q. Li, P. Li, W. Zhang, J. Alloys Compd. 691, 698–704 (2017)CrossRefGoogle Scholar
  19. 19.
    C.C. Sun, Q.C. Dong, J. Yang, Z.Y. Dai, J.J. Lin, P. Chen, W. Huang, X.C. Dong, Nano Res. 9, 2234–2243 (2016)CrossRefGoogle Scholar
  20. 20.
    H.J. Qiu, L. Fang, Y.P. Mu, K. Wu, Y. Wang, J. Alloys Compd. 701, 122–126 (2017)CrossRefGoogle Scholar
  21. 21.
    S.A. Khan, S.B. Khan, A.M. Asiri, J. Mater. Sci.: Mater. Electron. 27, 5294–5302 (2016)Google Scholar
  22. 22.
    C.H. Liu, Y.Y. Qiu, F. Wang, Q. Liang, Z.D. Chen, Nanotechnology 28, 445403 (2017)CrossRefGoogle Scholar
  23. 23.
    W.F. Chen, K. Sasaki, C. Ma, A.I. Frenkel, N. Marinkovic, J.T. Muckerman, Y.M. Zhu, R.R. Adzic, Angew. Chem. Int. Ed. 51, 6131–6135 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Jahan, Z. Liu, K.P. Loh, Adv. Funct. Mater. 23, 5363–5372 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Niu, L. Shi, X. Li, J. Pan, R. Gu, H. Zhao, F. Qiu, Y. Yan, M. Lan, Electrochim. Acta 235, 64–71 (2017)CrossRefGoogle Scholar
  26. 26.
    L.A. Stern, L.G. Feng, F. Song, X.L. Hu, Energy Environ. Sci. 8, 2347–2351 (2015)CrossRefGoogle Scholar
  27. 27.
    C. Tang, N.Y. Cheng, Z.H. Pu, W. Xing, X.P. Sun, Angew. Chem. Int. Ed. 127, 9483–9487 (2015)CrossRefGoogle Scholar
  28. 28.
    Y.P. Zhu, Y.P. Liu, T.Z. Ren, Z.Y. Yuan, Adv. Funct. Mater. 25, 7337–7347 (2015)CrossRefGoogle Scholar
  29. 29.
    Z. Wei, J.Wang,S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li, Y. Wang, ACS Catal. 5, 4783–4789 (2015)CrossRefGoogle Scholar
  30. 30.
    L.M. da Silva, L.A.D. Faria, J.F.C. Boodts, Electrochim. Acta 47, 395–403 (2001)CrossRefGoogle Scholar
  31. 31.
    X.H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. Int. Ed. 51, 9689–9692 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Wang, Z. Wei, Y. Gong, S. Wang, D. Su, C. Han, H. Li, Y. Wang, Chem. Commun. 51, 12859–12862 (2015)CrossRefGoogle Scholar
  33. 33.
    R. Nie, J. Shi, W. Du, W. Ning, Z. Hou, F.S. Xiao, J. Mater. Chem. A 1, 9037–9045 (2013)CrossRefGoogle Scholar
  34. 34.
    F.B. Su, X.S. Zhao, L. Lv, Z.C. Zhou, Carbon 42, 2821–2831 (2004)CrossRefGoogle Scholar
  35. 35.
    S. Ababou-Girard, H. Sabbah, B. Fabre, K. Zellama, F. Solal, C. Godet, J. Phys. Chem. C 111, 3099–3108 (2007)CrossRefGoogle Scholar
  36. 36.
    J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng, Y. Xie, Nano Res. 5, 521–530 (2012)CrossRefGoogle Scholar
  37. 37.
    J. Li, S. Tang, L. Lu, H.C. Zeng, J. Am. Chem. Soc. 129, 9401–9409 (2007)CrossRefGoogle Scholar
  38. 38.
    B. Liu, J.B. He, Y.J. Chen, Y. Wang, N. Deng, Int. J. Hydrog. Energy 38, 3130–3136 (2013)CrossRefGoogle Scholar
  39. 39.
    D.M.F. Santos, L. Amaral, B. Šljukić, D. Macciò, A. Saccone, C.A.C. Sequeira, J. Electrochem. Soc. 161, F386–F390 (2014)CrossRefGoogle Scholar
  40. 40.
    X. Wang, Y. Zheng, J. Yuan, J. Shen, L. Niu, A.J. Wang, Electrochim. Acta 235, 422–428 (2017)CrossRefGoogle Scholar
  41. 40.
    J. Chen, K.L. Huang, S.Q. Liu, X. Hu, J. Power Sources 186, 565–569 (2009)CrossRefGoogle Scholar
  42. 42.
    K. Xie, H.P. Wu, Y.N. Meng, K. Lu, Z.X. Wei, Z. Zhang, J. Mater. Chem. A 3, 78–82 (2015)CrossRefGoogle Scholar
  43. 43.
    G.G. Zhang, S.H. Zang, X.C. Wang, ACS Catal. 5, 941–947 (2015)CrossRefGoogle Scholar
  44. 44.
    X. Zhou, J. Jin, X.J. Zhu, J. Huang, J.G. Yu, W.Y. Wong, W.K. Wong, J. Mater. Chem. A 4, 5282–5287 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouPeople’s Republic of China
  2. 2.School of Petrochemical EngineeringChangzhou UniversityChangzhouPeople’s Republic of China

Personalised recommendations